화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.8, 452-456, August, 2009
Mo 기판위의 NaF 중간층을 이용한 Cu(In,Ga)Se2 광흡수층의 Na 도핑특성에 관한 연구
Na Doping Properties of Cu(In,Ga)Se2 Absorber Layer Using NaF Interlayer on Mo Substrate
E-mail:
In high-efficiency Cu(In,Ga)Se2 solar cells, Na is doped into a Cu(In,Ga)Se2 light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)Se2 absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of 103 Ω·cm indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.
  1. Repins I, Contreras M, Romero Y, Yan Y, Metzger, Li J, Johnston S, Egaas R, DeHart C, Scharf J, McCandless BE, Nouf R, IEEE Photovoltaics Specialists Conference Record, 33, 1065(2008). (2008)
  2. Tuttle JR, Ward JS, Duda A, Berens TA, Contreras MA, Ramanathan KR, Tennant AL, Keane J, Cole ED, Emery K, Noufi R, Proc. Material Research Society Spring Meeting, 426, 143 (1996)
  3. Tuttle JR, Contreras MA, Gillespie TJ, Ramanathan KR, Tennant AL, Keane J, Gabor AM, Noufi R, Progr. Photovolt., 235, 3 (1955)
  4. Stolt L, Granath K, Niemi E, Bodegard M, Hedstrom J, Bocking S, Carter M, Burgelman M, Dimmler B, Menner R, Powalla M, Schock HW, Proc. 13th European Photovolt. Solar Energy Conf., Nice, 1451 (1995). (1995)
  5. Negami T, Nishitani M, Kohara N, Hashimoto Y, Wada T, Proc. Material Research Society Spring Meeting, 426, 291 (1996)
  6. Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus KO, Schok HW, Appl. Phys. Lett., 62, 597 (1993)
  7. Dawson-Elli DF, Moore CB, Gay RR, Jensen CL, Proc. 1st World Conf. Photovoltaic Energy Conv. p.152 (1994). (1994)
  8. Bodegard M, Stol L, Hedstrom J, 12th European Photovoltaic Solar Energy Conference and Exhibition, p.1743-1746, Amsterdam (1994). (1994)
  9. Holz J, Karg F, Von Philipsborn H, 12th European Photovoltaic Solar Energy Conference and Exhibition, p.1592-1595, Amsterdam (1994). (1994)
  10. Hedstrom J, Ohlsen H, Bodegard M, Kylmer A, Stolt L, Proc. 23rd IEEE Photovoltaic Solar Energy Conf., p.1743 Amsterdam (1994). (1994)
  11. Rudmann D, Bilger G, Kaelin M, Haug FJ, Zogg H, Tiwari AN, Thin Solid Films, 431, 37 (2003)
  12. Granath K, Bodegard M, Stolt L, Thin Solid Films, 361, 9 (2000)
  13. Ruckh M, Schmid D, Kaiser M, Schaffler R, Walter T, Schock HW, 1st WCPEC, Hawaii, p.156-159 (1994). (1994)
  14. Scofield JH, 1st WCPEC, p. 164-166, Hawaii (1994). (1994)
  15. Marsillac S, Dorn S, Rocheleau R, Solar Energy Mat. & Solar Cells 82, p. 45-52 (2004). (2004)
  16. Nakada T, Iga D, Ohbo H, Kunioka A, Jpn. J. Appl. Phys., 36, 732 (1997)
  17. Schroeder DJ, Rockett A, J. Appl. Phys., 82, 4982 (1997)