화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.5, 281-287, May, 2009
플라즈마 보조 분자선 적층 성장법으로 성장한 ZnO 박막의 청색 발광 중심
Blue Luminescent Center in Undoped ZnO Thin Films Grown by Plasma-assisted Molecular Beam Epitaxy
E-mail:
ZnO thin film was grown on a sapphire single crystal substrate by plasma assisted molecular beam epitaxy. In addition to near band edge (NBE) emissions, both blue and green luminescences are also observed together. The PL intensity of the blue luminescence (BL) range from 2.7 to 2.9 eV increased as the amount of activated oxygen increased, but green luminescence (GL) was weakly observed at about 2.4 eV without much change in intensity. This result is quite unlike previous studies in which BL and GL were regarded as the transition between shallow donor levels such as oxygen vacancy and interstitial zinc. Based on the transition level and formation energy of the ZnO intrinsic defects predicted through the first principle calculation, which employs density functional approximation (DFA) revised by local density approximation (LDA) and the LDA+U approach, the green and blue luminescence are nearly coincident with the transition from the conduction band to zinc vacancies of V2- Zn and V- Zn, respectively.
  1. Bagnall DM, Chen YF, Zhu Z, Koyama S, Shen MY, Goto T, Yao T, Appl. Phys. Lett., 70, 2230 (1997)
  2. Powell A, Zadeh KK, Wlodarski W, Sen. Actuators A, 15, 456 (2004)
  3. Sun YM, Thesis PD (in English), University of Science and Technology of China (2000). (2000)
  4. Sun Y, Xu P, Shi C, Xu F, Pan H, Lu E, J. Electron. Spectrosc. Relat. Phenom., 114, 1123 (2001)
  5. Pan M, Fenwick WE, Strassburg M, Li N, Kang H, Kane MH, Asghar A, Gupta S, Varatharajan R, Nause J, El-Zein N, Fabiano P, Steiner T, Ferguson I, J. Cryst. Growth, 287(2), 688 (2006)
  6. Fang Z, Wang Y, Xu D, Tan YS, Liu X, Opt. Mater., 26, 239 (2004)
  7. Fang Z, Wang Y, Peng X, Liu X, Zhen C, Mater. Lett., 57, 4187 (2003)
  8. Park TE, Kim DC, Kong BH, Cho HK, J. Korean Phys. Soc., 45, 697 (2004)
  9. Wei XQ, Man BY, Xue CS, Chen CS, Liu M, Jpn. J. Appl. Phys., 45, 8586 (2006)
  10. Wei XQ, Man BY, Liu M, Xue CS, Zhuang HZ, Yang C, Physica. B: Condensed matter, 388, 145 (2007)
  11. Zhang DH, Xue ZY, Wang QP, J. Phys. D: Appl. Phys., 35, 2837 (2002)
  12. Zhang DH, Wang QP, Xue ZY, Appl. Surf. Sci., 207(1-4), 20 (2003)
  13. Wang QP, Zhang XJ, Wang GQ, Chen SH, Wu XH, Ma HL, Appl. Surf. Sci., 254(16), 5100 (2008)
  14. Fu ZX, Guo CX, Lin BX, Liao GH, Chin. Phys. Lett., 15, 457 (1998)
  15. Ryu YR, Zhu S, Budai JD, Chandrasekhar HR, Miceli PF, White HW, Appl. Phys. Lett., 88, 201 (2000)
  16. Lin YJ, Tsai CL, Lu YM, Liu CJ, J. Appl. Phys., 99, 093501 (2006)
  17. Zhang SB, Wei SH, Zunger A, Phys. Rev. B, 63, 075205 (2001)
  18. Wu CL, Qiao XL, Luo LL, Li HJ, Mater. Res. Bull., 27, 327 (1992)
  19. Chen Y, Bagnall DM, Zhu Z, Sekiuchi T, Park KT, Hiraga K, Yao T, Koyama S, Shen MY, Goto T, J. Cryst. Growth, 181, 165 (1997)
  20. Selim FA, Weber MH, Solodovnikov D, Lynn KG, Phys. Rev. Lett., 99, 085502 (2007)
  21. Heo YW, Ip K, Pearton SJ, Norton DP, Budai JD, Appl. Surf. Sci., 252(20), 7442 (2006)
  22. Lima SAM, Sigoli FA, Jafelicci Jr M, Davolos MR, Int. J. Inorg. Mater., 3, 749 (2001)
  23. Xu CX, Sun XW, Zhang XH, Ke L, Chua SJ, Nanotechnology, 15, 856 (2004)
  24. Janotti A, Van de Walle CG, J. Cryst. Growth, 287(1), 58 (2006)
  25. Laks DB, Van de Walle CG, Neumark GF, Blochl PE, Pantelides ST, Phys. Rev. B, 45, 10965 (1992)
  26. Kang HS, Kang JS, Kim JW, Lee SY, J. Appl. Phys., 95, 1246 (2004)
  27. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogn S, Avrutin V, Cho SJ, Morkoc H, J. Appl. Phys., 98, 041301 (2005)
  28. Gopel W, J. Vac. Sci. Technol., 16, 1229 (1979)
  29. Studenikin SA, Cocivera M, J. Appl. Phys., 89, 6189 (2001)
  30. Lin B, Fu Z, Jia Y, Appl. Phys. Lett., 79, 943 (2001)
  31. Lin BX, Fu ZX, Jia YB, Liao GH, J. Electrochem. Soc., 148(3), G110 (2001)
  32. Meyer BK, Alves H, Hoffman DM, Kriegseis W, Foster D, Bertram F, Christen J, Hoffman A, Straßburg M, Dworzak M, Haboeck U, Rodina AV, Phys. Stat. Sol. B, 241, 231 (2004)
  33. Jung YS, Choi WK, Kononenko OV, Panin GN, J. Appl. Phys., 99, 013502 (2006)
  34. Reynolds DC, Look DC, Jogai B, Litton CW, Collins TC, Harsch W, Cantell G, Phys. Rev. B, 57, 12151 (1998)
  35. Varshni YP, Physica, 34, 149 (1967)
  36. Hong KJ, Jeong TS, J. Cryst. Growth, 280(3-4), 545 (2005)
  37. Cody GD, in Hydrogenated Amorphous Silicon, p. 42, ed. Pankove JI, Academic, New York, (1984). (1984)
  38. Kumar B, Gonga H, Vicknesh S, Chua SJ, Tripathy S, Appl. Phys. Lett., 89, 141901 (2006)
  39. Troger L, Yokoyama T, Arvanitis D, Lederer T, Tischer M, Baberschke K, Phys. Rev. B, 49, 888 (1994)
  40. Boemare C, Monteiro T, Soares MJ, Guilherme JG, Alves E, Physica B: Condensed matter, 308, 985 (2001)
  41. Wang L, Giles NC, J. Appl. Phys., 94, 973 (2003)
  42. Kumar N, Kaur R, Mehra RM, J. Lumin., 126, 784 (2007)