화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.1, 13-17, January, 2009
다양한 산소분압에 따른 용융 Ag-Sn 및 Ag-Cu 합금의 표면장력
Surface Tension of Molten Ag-Sn and Au-Cu Alloys at Different Oxygen Partial Pressures
E-mail:
A semi-empirical method to estimate the surface tension of molten alloys at different oxygen partial pressures is suggested in this study. The surface tension of molten Ag-Sn and Ag-Cu alloys were calculated using the Butler equation with the surface tension value of pure substance at a given oxygen partial pressure. The oxygen partial pressure ranges were 2.86 × 10-12 - 1.24 × 10-9 Pa for the Ag-Sn system and 2.27 × 10-11 - 5.68 × 10-4 Pa for the Ag-Cu system. In this calculation, the interactions of the adsorbed oxygen with other metallic constituents were ignored. The calculated results of the Ag-Sn alloys were in reasonable accordance with the experimental data within a difference of 8%. For the Ag-Cu alloy system at a higher oxygen partial pressure, the surface tension initially decreased but showed a minimum at XAg = 0.05 to increase as the silver content increased. This behavior appears to be related to the oxygen adsorption and the corresponding surface segregation of the constituent with a lower surface tension. Nevertheless, the calculated results of the Ag-Cu alloys with the present model were in good agreement with the experimental data within a difference of 10%.
  1. Lee J, Shimoda W, Tanaka T, Mater. Trans., 45(9), 2864 (2004)
  2. Kaban IG, Gruner S, Hoyer W, Monatsh. Chem., 136(11), 1823 (2005)
  3. Kucharski M, Fima P, Monatsh. Chem., 136(11), 1841 (2005)
  4. Moser Z, Gasior W, Patrus J, J. Phase Euqil., 22(3), 254 (2001)
  5. German RM, Powder Metallurgy Science, 2nd ed., p.100, Metal Powder Industries Federation, Princeton, New Jersey, U.S.A., (1994). (1994)
  6. Bernard G, Lupis CHP, Metall. Trans., 2(11), 2991 (1971)
  7. Sangiorgi R, Passerone AA, Muolo ML, Acta Metall., 30(8), 1597 (1982)
  8. Timatsu H, Abe M, Nakatani F, Ogino K, J. Jpn. Inst. Metals, 49(7), 523 (1985)
  9. Mehrotra SP, Chaklader ACD, Metall. Trans. B, 16B(3), 567 (1985)
  10. Chatain D, Chabert F, Ghetta V, J. Am. Ceram. Soc., 77(1), 197 (1994)
  11. Goumiri L, Joud JC, Acta Metall., 30(7), 1397 (1982)
  12. Momma K, Suto H, J. Jpn. Inst. Metals, 24(6), 377 (1960)
  13. O’Brien TE, Chaklader ACD, J. Am. Ceram, Soc., 57(8), 329 (1974)
  14. Morita Z, Kasama A, J. Jpn. Inst. Metals, 40(8), 787 (1976)
  15. Gallios B, Lupis CHP, Metall. Trans. B, 12(3), 549 (1981)
  16. Ogino K, Taimatsu H, Nakatani F, J. Jpn. Inst. Metals, 46(10), 957 (1982)
  17. Kozakevitch P, Urbain G, Mem. Sci. Rev. Met., 58, 517 (1961)
  18. Keen BJ, Mills KC, Bryan JW, Hondros ED, Can. Met. Q., 21(4), 393 (1982)
  19. Kasama A, McLean A, Miller WA, Morita Z, Ward MJ, Can. Met. Q., 22(1), 9 (1983)
  20. Ogino K, Taimatsu H, J. Jpn. Inst. Metals, 43(10), 871 (1979)
  21. Taimatsu H, Ogino K, Nakatani F, J. Jpn. Inst. Metals, 50(2), 176 (1986)
  22. Bradhurst DH, Buchanan AS, J. Phys. Chem, 63, 1486 (1959)
  23. Niu Z, Mukai K, Shiraishi Y, Hibiya T, Kakimoto K, Koyama M, J. Jpn. Assoc. Crystal. Growth, 24(4), 369 (1997)
  24. Mukai K, Yuan Z, Mater. Trans. JIM, 41(2), 331 (2000)
  25. Passerone A, Sangiorgi R, Caracciolo G, J. Chem. Thermodynamics, 15(10), 971 (1983)
  26. Taimatsu H, Sangiorgi R, Surf. Sci., 261(1-3), 375 (1992)
  27. Yuan Z, Mukai K, Takagi K, Ohtaka M, J. Jpn. Inst. Metals, 65(1), 21 (2001)
  28. Ghetta V, Fouletier J, Chatain D, Acta Mater., 44(5), 1927 (1996)
  29. Lupis CHP, Chemical Thermodynamics of Materials, p.433, North-Holland, New York, (1983). (1983)
  30. Lee J, Tanaka T, Yamamoto M, Hara S, Mater. Trans., 45(3), 625 (2004)
  31. Lee J, Tanaka T, Asano Y, Hara S, Mater. Trans., 45(8), 2719 (2004)
  32. Yeum KS, Speiser R, Poirier DR, Metall. Trans. B, 20B(5), 693 (1989)
  33. Tanaka T, Hara S, Steel Res., 72(11-12), 493 (2001)
  34. Lee J, Morita K, Scan. J. Metall., 34(2), 131 (2005)
  35. Butler JA, Proc. Roy. Soc. A, 135, 348 (1932)
  36. Tanaka T, Hara S, Ogawa M, Ueda T, Z. Metallkd., 89(5), 368 (1998)
  37. Turkdogan ET, Physical Chemistry of High Temperature Technology, p. 5-21, Academic Press, New York, (1980). (1980)
  38. Tanaka T, Nakamoto M, Oguni R, Lee J, Hara S, Z. Metallkd., 95(9), 818 (2004)