화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.18, No.11, 623-627, November, 2008
Ba2Mg(PO4)2:Eu 형광체의 합성과 자외선 여기하의 발광특성
Preparation of Ba2Mg(PO4)2:Eu Phosphors and Their Photoluminescence Properties Under UV Excitation
E-mail:
For possible applications as luminescent materials for white-light emission using UV-LEDs, Ba2Mg(PO4)2:Eu2+ phosphors were prepared by a solid state reaction. The photoluminescence properties of the phosphor were investigated under ultraviolet ray (UV) excitation. The prepared phosphor powders were characterized to from a single phase of a monoclinic crystalline structure by a powder X-ray diffraction analysis. In the photoluminescence spectra, the Ba2Mg(PO4)2:Eu2+ phosphor showed an intense emission band centered at the 584 nm wavelength due to the f-d transition of the Eu2+ activator. The optimum concentration of Eu2+ activator in the Ba2Mg(PO4)2 host, indicating the maximum emission intensity under the excitation of a 395 nm wavelength, was 5 at%. In addition, it was confirmed that the Eu2+ ions are substituted at both Ba2+ sites in the Ba2Mg(PO4)2 crystal. On the other hand, the critical distance of energy transfer between Eu2+ ions in the Ba2Mg(PO4)2 host was evaluated to be approximately 19.3 A. With increasing temperature, the emission intensity of the Ba2Mg(PO4)2:Eu phosphor was considerably decreased and the central wavelength of the emission peak was shifted toward a short wavelength.
  1. Neeraj S, Kijima N, Cheetham AK, Chem. Phys. Lett., 387(1-3), 2 (2004)
  2. Nakamura S, Senoh M, Mukai T, Appl. Phys. Lett., 62(19), 2390 (1993)
  3. Schlotter P, Schmidt R, Schneider J, Appl. Phys. A, 64, 417 (1997)
  4. Schlotter P, Baur J, Hielscher C, Kunzer M, Obloh H, Schmidt R, Schneider J, Mater. Sci. Eng. B, 59, 390 (1999)
  5. Pan Y, Wu M, Su Q, J. Phys. Chem. Solids, 65, 845 (2004)
  6. Mach RM, Mueller G, Krames MR, Hoppe HA, Standler F, Schnick W, Juestel T, Schmidt P, Phys. Stat. Sol., 202(9), 1727 (2005)
  7. Nishida T, Ban T, Kobayashi N, Appl. Phys. Lett., 82(22), 3817 (2003)
  8. Bachmann V, Justel T, Meijerink A, Ronda C, Schmidt PJ, J. Lumin., 121, 441 (2006)
  9. Zhang M, Wang J, Zhang QH, Ding WJ, Su Q, Mater. Res. Bull., 42(1), 33 (2007)
  10. Zhang M, Wang J, Ding W, Zhang Q, Su Q, Appl. Phys. B, 86, 647 (2007)
  11. Yan S, Zhang J, Zhang X, Lu S, Ren X, Nie Z, Wang X, J. Phys. Chem. C, 111, 13256 (2007)
  12. Zhang X, Zeng H, Su Q, J. Alloys & Compd., 441, 259 (2007)
  13. He H, Fu R, Song X, Wang D, Chen J, J. Lumin., 128, 489 (2008)
  14. Hu Y, Zhuang W, Ye H, Zhang S, Fang Y, Huang X, J. Lumin., 111, 139 (2005)
  15. Chartier C, Barthou C, Benalloul P, Frigerio JM, J. Lumin., 111, 147 (2005)
  16. Jung HK, Lee DW, Jung KY, Boo JH, J. Alloys & Compd., 390, 189 (2005)
  17. Lucas F, Wallez G, Jaulmes S, Elfakir A, Quarton M, Acta Cryst. C, 53, 1741 (1997)
  18. Wu ZC, Gong ML, Shi JX, Wang G, Su QA, Chem. Lett., 36(3), 410 (2007)
  19. Blasse G, Philips Res. Rep., 24 (1969) 131. (1969)