화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.18, No.8, 450-453, August, 2008
In 코도핑 된 p-GaN의 광학적 특성
In Co-Doping Effect on the Optical Properties of P-Type GaN Epilayers
E-mail:
Mg-doped and In-Mg co-doped p-type GaN epilayers were grown in a low-pressure metal organic chemical vapor deposition technique. The effect of In doping on the p-GaN layer was studied through photoluminescence (PL), persistent photoconductivity (PPC), and transmission electron microscopy (TEM) at room temperature. For the In-doped p-GaN layer, the PL intensity increases significantly and the peak position shifts to 3.2 eV from 2.95 eV of conventional p-GaN. Additionally, In doping greatly reduces the PPC, which was very strong in conventional p-GaN. A reduction in the dislocation density is also evidenced upon In doping in p-GaN according to TEM images. The improved optical properties of the In-doped p-GaN layer are attributed to the high crystalline quality and to the active participation of incorporated Mg atoms.
  1. Nakamura S, Senoh M, Iwasa N, Nagahama S, Jpn. J. Appl. Phys., 34, L797 (1995)
  2. Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto H, Jpn. J. Appl. Phys., 35, L74 (1996)
  3. Lim BW, Chen QC, Yang JY, Khan MA, Appl. Phys. Lett., 68, 3761 (1996)
  4. Glaser ER, Kennedy TA, Doverspike K, Rowland LB, Gaskill DK, Freitas JA, Asif Khan JM, Olson DT, Kuznia JN, Wickenden DK, Phys. Rev. B, 51, 13326 (1995)
  5. Gotz W, Johnson JM, Bour DP, Appl. Phys. Lett., 68, 3470 (1996)
  6. Hirsch MT, Wolk JA, Walukiewicz W, Haller EE, Appl. Phys. Lett., 71, 1098 (1997)
  7. Qiu CH, Pankove JI, Appl. Phys. Lett., 70, 1983 (1997)
  8. Chadi DJ, Appl. Phys. Lett., 71, 2970 (1997)
  9. Yamaguchi S, Kariya M, Kashima T, Nitta S, Kosaki M, Yukawa Y, Amano H, Akasaki I, Phys. Rev. B, 64, 035318 (2000)
  10. Chang FC, Chou WC, Chen WH, Lee MC, Chen WK, Huang HY, Jpn. J. Appl. Phys., 44, 7504 (2005)
  11. Chung SJ, Kumar MS, Kim YK, Hong CH, Lee H, Suh EK, Jun YK, J. Cryst. Growth, 277(1-4), 133 (2005)
  12. Chung SJ, Jeong MS, Cha OH, Hong CH, Suh EK, Lee HJ, Appl. Phys. Lett., 76, 1021 (2000)
  13. Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B, Schlotter P, Appl. Phys. Lett., 72, 1326 (1998)
  14. Sheu JK, Su YK, Chi GC, Pong BJ, Chen CY, Huang CN, Chen WC, J. Appl. Phys., 84, 4590 (1998)
  15. Johnson C, Lin JY, Jing HX, Asif Khan M, Sun CJ, Appl. Phys. Lett., 68, 1808 (1996)
  16. Li JZ, Lin JY, Jiang HX, Salvador A, Botchkarev A, Morkoc H, Appl. Phys. Lett., 69, 1474 (1996)
  17. Yamaguchi S, Kariya M, Nitta S, Kashima T, Kosaki M, Yukawa Y, Amano H, Akasaki I, J. Cryst. Growth, 221, 327 (2000)
  18. Yamaguchi S, Kariya M, Nitta S, Amano H, Akasaki I, Jpn. J. Appl. Phys., 39, 2385 (2000)
  19. Cho HK, Kim CS, Hong YK, Kim YW, Hong CH, Suh EK, Lee HJ, Phys. Status Solidi B, 228, 231 (2001)
  20. Chang FC, Shen KC, Chung HM, Lee MC, Chen WH, Chen WK, J. Phys., (China), 40, 637 (2002)
  21. Chung HM, Chuang WC, Pan YC, Tsai CC, Lee MS, Chen WH, Chen WK, Chiang CI, Lin CH, Chang H, Appl. Phys. Lett., 76, 897 (2000)