화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.1, 92-98, February, 2015
활성탄소의 불소화가 크롬이온 흡착에 미치는 영향
Effects of the Fluorination of Activated Carbons on the Chromium Ion Adsorption
E-mail:
초록
본 연구에서는 페놀계 활성탄소를 다양한 불소 분압(0.01∼0.03 MPa)으로 불소화를 실시하였으며, 불소화된 활성탄소의 6가 크롬 흡착 특성을 조사하였다. BET와 XPS 결과로부터, 불소화 처리된 활성탄소는 비표면적 및 총 기공부피가 각각 24.7, 58.8% 증가되었으며, 활성탄소 표면에 불소 관능기가 도입됨을 알 수 있었다. 불소 분압이 0.02 MPa일 때, 크롬이온 흡착에 최적화된 표면처리 조건임을 확인하였다. 또한, 초기농도 300 mg/L에서 98%의 제거효율을 나타내었으며, 이러한 결과는 미처리 활성탄소와 비교하여 약 3배 증가됨을 알 수 있었다. 한편, 불소화된 활성탄소의 크롬이온 흡착은 미처리 활성탄소와 대조적으로 30 min 이내에 완료되었으며, 이러한 현상은 페놀계 활성탄소의 표면에서 크롬 이온과의 친화성 증가에 의한 것으로 판단되었다.
In this study, phenol-based activated carbons (ACs) were fluorinated at various fluorine partial pressures (0.01∼0.03 MPa) and the Cr6+ ion adsorption of fluorinated ACs was investigated. According to BET and XPS results, the specific surface area and total pore volume of fluorinated ACs increased by 24.7 and 55.8%, respectively, and fluorine functional groups were introduced to AC surface. The most optimized condition of Cr6+ ion adsorption was confirmed at the fluorine partial pressure of 0.02 MPa. And also the removal efficiency of Cr6+ ion was up to 98% at 300 mg/L of the initial concentration, and these results showed an approximately three-fold increase compared to that of using untreated ACs. Furthermore, the Cr6+ ion adsorption of fluorinated ACs was completed in less than 30 min in contrast with untreated ACs, which was expected to be an increase of the affinity between Cr6+ ions and ACs surfaces by fluorination.
  1. Park SJ, Kim YM, Shin JS, J. Korean Ind. Eng. Chem., 14(1), 41 (2003)
  2. Anirudhan TS, Nima J, Divya PL, Appl. Surf. Sci., 279, 441 (2013)
  3. Kotas J, Stasicka Z, Environ. Pollut., 107, 263 (2000)
  4. Park DH, Park JM, Korean Chem. Eng. Res., 44(2), 107 (2006)
  5. Wu Y, Luo HJ, Wang H, Wang C, Zhang J, Zhang ZL, J. Colloid Interface Sci., 394, 183 (2013)
  6. Park HS, J. Environ. Toxicol., 18, 165 (2003)
  7. Abbasi-Garravand E, Mulligan CN, Sep. Purif. Technol., 132, 505 (2014)
  8. Agrafioti E, Kalderis D, Diamadopoulos E, J. Environ. Manage., 133, 309 (2014)
  9. Pakzadeh B, Batista JR, Water Res., 45, 3055 (2011)
  10. Thomson RC, Miller MK, Acta Mater., 46, 2203 (1988)
  11. Dialynas E, Diamadopoulos E, Desalination, 238(1-3), 302 (2009)
  12. Bessbousse H, Rhlalou T, Verchere JF, Lebrun L, J. Membr. Sci., 307(2), 249 (2008)
  13. Kobya M, Bioresour. Technol., 91(3), 317 (2004)
  14. Talreja N, Kumar D, Verma N, J. Water Process Eng., 3, 34 (2014)
  15. Huang GL, Shi JX, Langrish TAG, Chem. Eng. J., 152(2-3), 434 (2009)
  16. Ju HS, Lee SI, Lee YS, Ahn HG, Appl. Chem., 4(1), 173 (2000)
  17. Ko S, Kim DH, Kim YD, Park D, Jeong W, Lee DH, Lee JY, Kwon SB, Appl. Chem. Eng., 24(5), 513 (2013)
  18. Liu SX, Chen X, Chen XY, Liu ZF, Wang HL, J. Hazard. Mater., 141(1), 315 (2007)
  19. Owlad M, Aroua MK, Daud WAW, Baroutian S, Water Air Soil Pollut., 200, 59 (2009)
  20. Jung MJ, Jeong E, Cho S, Yeo SY, Lee YS, J. Colloid Interface Sci., 381, 152 (2012)
  21. Im JS, Yun J, Lim YM, Kim HI, Lee YS, Acta Biomater., 6, 102 (2010)
  22. Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS, Carbon, 49, 2235 (2011)
  23. Jung MJ, Lim JW, Park IJ, Lee YS, Appl. Chem. Eng., 21(3), 317 (2010)
  24. Jung MJ, Jeong E, Kim S, Lee SI, Yoo JS, Lee YS, J. Fluorine Chem., 132, 1127 (2011)
  25. Kang KC, Kwon SH, Kim SS, Choi JW, Chun KS, J. Anal. Sci. Technol., 19, 285 (2006)
  26. Gregg SJ, Sing KSW, Adsorption surface area and porosity, Second ed., 195, Academy Press, London (1982)
  27. Swain BP, Surf. Coat. Technol., 201, 1589 (2006)
  28. Gelamo RV, Landers R, Rouxinol FPM, Trasferetti BC, Bica de Moraes MA, Davanzo CU, Durrant SF, Plasma Process. Polym., 4, 482 (2007)
  29. Cruz-Barba LE, Manolache S, Denes F, Langmuir, 18(24), 9393 (2002)
  30. Tressaud A, Durand E, Labrugere C, J. Fluorine Chem., 125, 1639 (2004)
  31. Mathur RB, Gupta V, Bahl OP, Tressaud A, Flandrois S, Synth. Met., 114, 197 (2000)
  32. Lee YS, Lee BK, Carbon, 40, 2461 (2002)
  33. Mangun CL, Benak KR, Economy J, Foster KL, Carbon, 39, 1809 (2001)
  34. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS, J. Ind. Eng. Chem., 15(3), 410 (2009)
  35. Jang JS, Yang HJ, J. Mater. Sci., 35(9), 2297 (2000)
  36. Nakajima T, Gupta V, Ohzawa Y, Koh M, Singh RN, Tressaud A, Durand E, J. Power Sources, 104(1), 108 (2002)
  37. Kim DY, In SJ, Lee YS, Polym.(Korea), 37(3), 316 (2013)
  38. Zhang L, Zhang Y, Appl. Surf. Sci., 316, 649 (2014)
  39. Bismarck A, Tahhan R, Springer J, Schulz A, Klapotke TM, Zell H, Michaeli W, J. Fluorine Chem., 84, 127 (1997)