Korean Journal of Materials Research, Vol.17, No.4, 207-214, April, 2007
나노급 Ir 삽입 니켈실리사이드의 미세구조 분석
Microstructure Characterization for Nano-thick Ir-inserted Nickel Silicides
E-mail:
We fabricated thermally-evaporated 10 -Ni/(poly)Si and 10 -Ni/1 -Ir/(poly)Si structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required for annealing. Silicides underwent rapid at the temperatures of 300~1200 for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope(TEM) and an Auger depth profile scope were employed for the determination of vertical section structure and thickness. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to 1000 and 800, respectively, while the conventional nickle monosilicide showed low resistance below 700. Through TEM analysis, we confirmed that a uniform, 20 -thick silicide layer formed on the single-crystal silicon substrate for the Ir-inserted case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of 1000. Auger depth profile analysis also supports the presence of thismixed microstructure. Our result implies that our newly proposed iridium-added NiSi process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.
- Kasuya A, Milczarek G, Dmitruk I, Barnakov Y, Czajka R, Perales O, Liu X, Tohji K, Jeyadevan B, Shinoda K, Ogawa T, Arai T, Hihara T, Sumiyama K, Colloids Surf. A, 202, 291 (2002)
- The International Technology RoadMap For Semiconductor, Front End Process, p. 25, SIA, 2003 Edition (2003). (2003)
- Dai JY, Guo ZR, Tee SF, Tay CL, Er E, Redkar S, Appl. Phys. Lett., 78, 3091 (2001)
- Prokop J, Zybill CE, Veprek S, Thin Solid Films, 359(1), 39 (2000)
- Detavernier C, Van Meirhaeghe RL, Cardon F, J. Appl. Phys., 88, 133 (2000)
- Chen J, Colinge JP, Flandre D, Gillon R, Raskin JP, Vanhoenacker D, J. Electrochem. Soc., 7, 144 (1997)
- Sun JJ, Tsai JY, Osburn CM, IEEE Trans. Electron Devices, 45, 1946 (1998)
- Fang H, Ozturk MC, Seebauer EG, Batchelor DE, J. Electrochem. Soc., 146(11), 4240 (1999)
- Lutze J, Scott G, Manley M, IEEE Electron Device Lett., 21, 155 (2000)
- Lasky JB, Nakos JS, Cain OJ, Geiss PJ, IEEE Trans. Electron Devices, 38, 262 (1991)
- Julies BA, Knoesen D, Pretorius R, Adams D, Thin Solid Films, 347(1-2), 201 (1999)
- Chang JF, Young TR, Yang Y, Ueng HY, Chang TC, Mater. Chem. Phys., 83(2-3), 199 (2004)
- Wang RN, Feng JY, Huang Y, Appl. Surf. Sci., 207(1-4), 139 (2003)
- Keum DH, Kim KH, Lee HJ, Transmission Electron Microscope Analytics, 1st ed., p.248-252, Cheongmoongak, Seoul, Korea (1996). (1996)
- Yoon K, Song O, Korean J. Mater. Res., 16(9), 571 (2006)
- Colgan EG, Gambino JP, Hong QZ, Mater. Sci. Eng., 16, 43 (1996)
- Huang W, Zhang L, Gao Y, Jin H, Microelectronic Eng., 83, 345 (2006)
- Jung Y, Song O, Kim S, Choi Y, Kim C, Korean J. Mater. Res., 15(5), 301 (2005)