화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.16, No.4, 257-263, April, 2006
TFT-LCDs에 적용 가능한 Cu-Ag 박막에 대한 Mo 기판 위에서의 특성조사
Characteristic of Cu-Ag Added Thin Film on Molybdenum Substrate for an Advanced Metallization Process
E-mail:
We have investigated the effect of silver added to Cu films on the microstructure evolution, resistivity, surface morphology, stress relaxation temperature, and adhesion properties of Cu(Ag) alloy thin films deposited on Mo glue layer upon annealing. In addition, pure Cu films deposited on Mo has been annealed and compared. The results show that the silver in Cu(Ag) thin films control the grain growth through the coarsening of its precipitates upon annealing at 300 ? C∼600 ? C and the grain growth of Cu reveals the activation energy of 0.22 eV, approximately one third of activation energy for diffusion of Ag dopant along the grain boundaries in Cu matrix (0.75 eV). This indicates that the grain growth can be controlled by Ag diffusion along the grain boundaries. In addition, the grain growth can be a major contributor to the decreased resistivity of Cu(Ag) alloy thin films at the temperature of 300 ? C∼500 ? C , and decreases the resistivity of Cu(Ag) thin films to 1.96μΩ?cm after annealing at 600 ? C . Furthermore, the addition of Ag increases the stress relaxation temperature of Cu(Ag) thin films, and thus leading to the enhanced resistance to the void formation, which starts at 300 ? C in the pure Cu thin films. Moreover, Cu(Ag) thin films shows the increased adhesion properties, possibly resulting from the Ag segregating to the interface. Consequently, the Cu(Ag) thin films can be used as a metallization of advanced TFT-LCDs.
  1. Jain A, Kodas TT, Jairath R, Hampdensmith MJ, J. Vac. Sci. Technol. B, 11(6), 2107 (1993)
  2. Lin P, Chen M, J. Appl. Phys., 38, 4863 (1999)
  3. Park YJ, Andleigh VK, Thompson CV, J. Appl. Phys, 85, 3546 (1999)
  4. Whitman C, Moslehi MM, Paranjpe A, Velo L, Omstead T, J. Vac. Sci. Technol. A, 17(4), 1893 (1999)
  5. Liu R, Pai CS, Martinez E, Solid State Electron., 43, 1003 (1999)
  6. Lin XW, Pramanlk D, Solid State Technol., 63 (1998)
  7. Ding PJ, Wang W, Lanford WA, Hymes S, Muraka SP, Appl. Phys. Lett., 65, 1778 (1994)
  8. Ito H, Nakasaki Y, Minarnihaba G, Suguro K, Okano H, Appl. Phys. Lett., 63, 934 (1993)
  9. Lanford WA, Ding PJ, Wang W, Hymes S, Muraka SP, Thin Solid Films, 262(1-2), 234 (1995)
  10. Ding PJ, Lanford WA, Hymes S, Muraka SP, J. Appl. Phys., 74, 1331 (1993)
  11. Hymes M, Muraka SP, Shepard S, Lanford WA, J. Appl. Phys., 71, 4623 (1992)
  12. Li J, Mayer JW, Colgan EG, J. Appl. Phys., 70, 2820 (1991)
  13. Lee W, Cho H, Cho B, Kim J, Kim YS, Jung WG, Kwon H, Lee J, Lee C, Reucroft PJ, Lee J, J. Vac. Sci. Technol. A, 18(6), 2972 (2000)
  14. Lee W, Cho H, Cho B, Kim J, Kim YS, Jung WG, Kwon H, Lee J, Reucroft PJ, Lee C, Lee J, J. Electrochem. Soc., 147(8), 3066 (2000)
  15. Lee WH, Cho HY, Cho ES, kim JY, Kim YS, Jung WG, Kwon H, Lee JH, Lee CM, Reucroft PJ, Lee JG, Appl. Phys. Lett., 77, 2192 (2000)
  16. Barrnak K, Lucadamo GA, Cabral C, Jr, Lavoie C, Harper JME, J. Appl. Phys., 87, 2204 (2000)
  17. Iscbyashi A, Enomoto Y, Yamada H, Takahashi S, Kadornura, IEDM Tech. Dig., 38, 953 (2004)
  18. Menzel S, Strehle S, Wendrock H, Wetzig K, Appl. Surf. Sci., 252(1), 211 (2005)
  19. Vaidya S, Sinha AK, Thin Solid Films, 75, 253 (1981)
  20. Knorr DB, Tracy DP, Rodbell KP, Appl. Phys. Lett., 59, 3241 (1996)
  21. Knorr DB, Rodbell KP, J. Appl. Phys., 79, 2409 (1996)