화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.15, No.11, 735-740, November, 2005
Cu 미세 배선을 위한 무전해 Ni-B 확산 방지막의 Cu 확산에 따른 상변태 거동
Phase Transformation by Cu Diffusion of Electrolessly Deposited Ni-B Diffusion Barrier for Cu Interconnect
E-mail:
The phase transformation of Ni-B diffusion barrier by Cu diffusion was studied. The Ni-B diffusion barrier, thickness of 10(Inn, was electrolessly deposited on the electroplated Cu interconnect. The specimens were annealed either in Ar atmosphere or in [Math Processing Error] atmosphere from [Math Processing Error] for 30min, respectively. Although the Ni-B coated specimens showed the decomposition of [Math Processing Error] above [Math Processing Error] in both Ar atmosphere and [Math Processing Error] atmosphere, Ni-B powders did not show the decomposition of [Math Processing Error] . The [Math Processing Error] was decomposed to Ni and B in hi atmospherr: and the metallic Ni formed the solid solution with Cu and the free B was oxidized to [Math Processing Error] . However, both the boron hydride and free B were not observed in the diffusion barrier after the annealing in [Math Processing Error] atmos There. These results revealed that the decomposition of [Math Processing Error] by Cu made the Cu diffusion continued toward the Ni-B diffusion barrier.
  1. Li B, Sullivan RD, Lee TC, Badami D, Microelectron. Reliab., 44, 365 (2004)
  2. Stamper AK, Fushelier MB, Tian X, 'Advanced wiring RC delay issues for sub-0.25-micron general CMOS' in 'Proceedings of Int. Interconnect Tech. Conf. (IITC)', 62 (1998) (1998)
  3. Murarka SP, Solid State Technol., 3, 83 (1996)
  4. Alford TL, Zeng Y, Nguyen P, Chen L, Mayer JW, Microelectron. Eng., 55, 389 (2001)
  5. Yamashita K, Odanaka S, IEEE T. Electron Dev., 47, 90 (2000)
  6. Lin XW, Pramanlk D, Solid State Technol., 63 (1998)
  7. Lloyd JR, Clement JJ, Thin Solid Films, 262(1-2), 135 (1995)
  8. Gardner DS, Onuki J, Kudoo K, Misawa Y, Vu QT, Thin Solid Films, 26, 104 (1995)
  9. Murarka SP, Verner IV, Gutmann RJ, 'Copper Fundamental Mechanism for Microelectronic Applications', Wiley, New York, (2000) (2000)
  10. Lin ST, Kuo YL, Lee C, Appl. Surf. Sci., 220(1-4), 349 (2003)
  11. Kang HK, Asano I, Ryu C, Wong SS, in 1993 VMIC Conf. Proc., 223 (1993)
  12. Kizil H, Steinbruchel C, Thin Solid Films, 449(1-2), 158 (2004)
  13. Ono H, Nakano T, Ohta T, Appl. Phys. Lett., 64, 151 (1994)
  14. Saito S, Matsuda K, Nishizawa K, Sakiyama K, Mater. Res. Soc., 319 (1987)
  15. Wang SQ, Raaijmakers I, Burrow BJ, Suthar S, Redkar S, Kim KB, J. Appl. Phys., 68, 5176 (1990)
  16. Holloway K, Fryer PM, Cabral Jr C, Harper JME, Bailey PJ, Kelleher KH, J. Appl. Phys., 71, 5433 (1992)
  17. Imahori J, Oku T, Murakami M, Thin Solid Films, 301(1-2), 142 (1997)
  18. Paunovic M, Bailey PJ, Schad RG, Smith DA, J. Electrochem. Soc., 141(7), 1843 (1994)
  19. Choi JW, Hong SJ, Lee HY, Kang SG, Kor. J. Mat. Res., 13(2), 101 (2003)
  20. Zhang H, Zhang X, Zhang YK, Plat. and Surf. Finish., 80(4), 80 (1993)
  21. Gaevskaya TV, Novotortseva IG, Tsybulskaya LS, Met. Finish., 94, 100 (1996)
  22. Masui K, Met. Finish., 84, 33 (1986)
  23. Sankara Narayanan TSN, Seshadri SK, J. Alloys and Comp., 365, 197 (2004)
  24. Li H, Li H, Deng JF, Mater. Lett., 41 (2001)