화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.15, No.5, 293-300, May, 2005
펄스 레이저 증착법에 의한 ZnO:Li 박막 성장과 열처리 효과
Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition
E-mail:
ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at 400 ? C . The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are 2.69×10cm ?3 and 52.137cm 2 /V?s at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, E g (T)=3.5128eV?(9.51×10 ?4 eV/K)T 2 /(T+280K) . After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of V zn ,V o ,Zn int ,andO int showned on PL spectrum are classified as a donors or accepters type. We confirm that ZnO:Li/Al 2 O 3 in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.
  1. Vanheusden K, Seuger CH, Wareen WL, Hampden-smith MJ, J. Lumin., 75, 11 (1979)
  2. Koch MH, Timbrell PY, Lamb RN, Semicond. Sci. Technol., 10, 1523 (1995)
  3. Sugiura M, Nakashima Y, Nakasaka T, Appl. Surf. Sci., 197-198, 472 (2002)
  4. Kondo KM, Ikeda CT, Kasqunami T, Jpn. J. Appl. Phys. Suppl., 29(1), 159 (1990)
  5. Wu MS, Azuma A, Kawabata N, J. Appl. Phys., 62(6), 2482 (1987)
  6. Mitsuyu T, Ono S, Wasa K, J. Appl. Phys., 44, 1061 (1973)
  7. Nakata Y, Okada T, Maeda M, Appl. Surf. Sci., 197-198, 368 (2002)
  8. Takada S, J. Appl. Phys., 73, 4739 (1973)
  9. Ambia MG, Islam MN, Hakim MO, Solar Energy Materials and Solar Cells, 28, 103 (1992)
  10. Labeau M, Rey P, Joubert JC, Delabouglise A, G, 213, 94 (1992)
  11. Tammenmaa M, Niinisto L, J. Crystal Growth, 216, 326 (2000)
  12. Wang XQ, Yang SR, Wang JZ, Li MT, Jiang XY, Du GT, Liu X, Chang RPH, J. Cryst. Growth, 226(1), 123 (2001)
  13. Fujita H, J. Phys. Soc., 20, 109 (1965)
  14. Varshni YP, Physica, 34, 149 (1967)
  15. Hummer K, Phys. Stat. Sol., 56, 249 (1973)
  16. Shay JL, Wernick JH, J. Phys. Soc. Jpn., 33(6), 1561 (1972)
  17. Sell DD, Stokowski SE, Dingle R, Dilorenzo JV, Phys. Rev. B7, 195, 4568 (1973)
  18. Halsted RE, Aven M, Phys. Rev. Lett., 14(64), 2034 (1965)