화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 569-574, January, 2015
Degradation of polyvinyl alcohol in aqueous solutions using UV/oxidant process
E-mail:
This study evaluates the effectiveness of the UV/S2O82- and UV/H2O2 processes in degrading polyvinyl alcohol (PVA) in aqueous solutions. The effects of pH, oxidant dosage, and initial PVA concentration on the efficiency of degradation of PVA were examined. Under acidic conditions, the efficiencies of degradation of PVA by the UV/S2O82- and UV/H2O2 processes exceeded those under alkaline conditions. The efficiencies of degradation of PVA by the UV/S2O8 2- and UV/H2O2 processes increased with oxidant dosage, but fell as the initial PVA concentration was increased. In the UV/S2O82- process, adding salts (Na2SO4, NaNO3, and NaCl) reduced the efficiency and rate of degradation of PVA. However, in the UV/H2O2 process, adding Na2SO4 and NaNO3 did not influence the degradation of PVA, whereas adding NaCl weakened the degradation of PVA to a greater extent than in the UV/S2O8 2- process. At pH 3 with an oxidant dosage of 0.25 mM and an initial PVA concentration of 20 mg/L, the degradation efficiencies of the UV/S2O82- and UV/H2O2 processes, as measured after 5 min, were 100 and 58%, respectively. The corresponding observed degradation rate constants of the UV/S2O82- and UV/H2O2 processes were 1.5509 and 0.2052 min-1, respectively. This result is attributable to the fact that SO4·- was better able to degrade PVA than was OH·. Therefore, the UV/S2O82- process was more effective than the UV/H2O2 process in degrading PVA.
  1. Tokiwa Y, Kawabata G, Jarerat A, Biotechnol. Lett., 23(23), 1937 (2001)
  2. Chou WL, Wang CT, Huang KY, Desalination, 251(1-3), 12 (2010)
  3. Solaro R, Corti A, Chillini E, Polym. Adv. Technol., 11, 873 (2000)
  4. Behera SK, Kim JH, Guo XJ, Park HS, J. Hazard. Mater., 153(3), 1207 (2008)
  5. Kang SF, Liao CH, Chen MC, Chemosphere, 46, 923 (2002)
  6. Giroto JA, Guardani R, Teixeira ACSC, Nascimento CAO, Chem. Eng. Process., 45(7), 523 (2006)
  7. Won YS, Baek SO, Tavakoli J, Ind. Eng. Chem. Res., 40(1), 60 (2001)
  8. Chen YX, Sun ZS, Yang Y, Ke Q, J. Photochem. Photobiol. A-Chem., 142, 85 (2001)
  9. Hsu LJ, Lee LT, Lin CC, Chem. Eng. J., 173(3), 698 (2011)
  10. Andreozzi R, Caprio V, Insola A, Marotta R, Catal. Today, 53(1), 51 (1999)
  11. Khataee AR, Vatanpour V, Ghadim ARA, J. Hazard. Mater., 161(2-3), 1225 (2009)
  12. Walling C, Acc. Chem. Res., 8, 125 (1975)
  13. Pignatello JJ, Environ. Sci. Technol., 26, 944 (1992)
  14. Brillas E, Calpe JC, Casado J, Water Res., 34, 2253 (2000)
  15. Ijpelaar GF, Meijers RT, Hopman R, Kruithof JC, Ozone Sci. Eng., 22, 607 (2000)
  16. Chen F, He J, Zhao J, Yu JC, New J. Chem., 26, 336 (2002)
  17. El-Dein AM, Libra JA, Wiesmann U, Chemosphere, 52, 1069 (2003)
  18. Daneshvar N, Khataee AR, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 41, 315 (2006)
  19. Aleboyeh A, Moussa Y, Aleboyeh H, Dyes Pigment., 66, 129 (2005)
  20. Schrank SG, dos Santos JNR, Souza DS, Souza EES, J. Photochem. Photobiol. A-Chem., 186, 125 (2007)
  21. Rauf MA, Marzouki N, Korbahti BK, J. Hazard. Mater., 159(2-3), 602 (2008)
  22. Chang MW, Chung CC, Chern JM, Chen TS, Chem. Eng. Sci., 65(1), 135 (2010)
  23. Chelme-Ayala P, El-Din MG, Smith DW, Water Res., 44, 2221 (2010)
  24. Bledzka D, Gryglik D, Olak M, Gebicki JL, Miller JS, Radiat. Phys. Chem., 79, 409 (2010)
  25. Ghodbane H, Hamdaoui O, Chem. Eng. J., 160(1), 226 (2010)
  26. Zhou C, Gao NY, Deng Y, Chu WH, Rong WL, Zhou SD, J. Hazard. Mater., 231-232, 43 (2012)
  27. He XX, Pelaez M, Westrick JA, O’Shea KE, Hiskia A, Triantis T, Kaloudis T, Stefan MI, de la Cruz AA, Dionysiou DD, Water Res., 46, 1501 (2012)
  28. Huang KC, Couttenye RA, Hoag GE, Chemosphere, 49, 413 (2002)
  29. Anipsitakis GP, Dionysiou DD, Environ. Sci. Technol., 38, 3705 (2004)
  30. Liang CJ, Wang ZS, Bruell CJ, Chemosphere, 66, 106 (2007)
  31. Li SX, Wei D, Mak NK, Cai Z, Xu XR, Li HB, Jiang Y, J. Hazard. Mater., 164(1), 26 (2009)
  32. Xu XR, Li XZ, Sep. Purif. Technol., 72(1), 105 (2010)
  33. Lee YC, Lo SL, Kuo J, Lin YL, Chem. Eng. J., 198-199, 27 (2012)
  34. Ghauch A, Tuqan A, Chem. Eng. J., 183, 162 (2012)
  35. Huie RE, Clifton CL, Neta P, Radiat. Phys. Chem., 38, 477 (1991)
  36. Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R, Environ. Sci. Technol., 39, 2383 (2005)
  37. Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R, Water Res., 41, 2962 (2007)
  38. Lau TK, Chu W, Graham NJD, Environ. Sci. Technol., 41, 613 (2007)
  39. Salari D, Niaei A, Aber S, Rasoulifard MH, J. Hazard. Mater., 166(1), 61 (2009)
  40. Criquet J, Leitner NKV, Chemosphere, 77, 194 (2009)
  41. Lin YT, Liang CJ,Chen JH, Chemosphere, 82, 1168 (2011)
  42. Gao YQ, Gao NY, Deng Y, Yang YQ, Ma Y, Chem. Eng. J., 195-196, 248 (2012)
  43. Finley JH, Anal. Chem., 33, 1925 (1961)
  44. Sharpless CM, Seibold DA, Linden KG, Aquat. Sci., 65, 359 (2003)
  45. Hayon E, McGarvey JJ, J. Phys. Chem., 71, 1472 (1967)
  46. Xu SC, Zhou H, Wei X, Jun L, Ozone Sci. Eng., 11, 281 (1989)