화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 604-609, January, 2015
Selective dissolution of copper from copper-chromium spent catalyst by baking-leaching process
E-mail:
The selective leaching of copper from the spent Cu-Cr catalyst was carried out with H2SO4. The effect of different parameters such as acid concentration, pulp density, temperature and particle size on leaching was investigated. The maximum extraction of copper and chromium was 67.25 and 2.3%, respectively at particle size 45-53 μm, pulp density 2.5%, temperature 90 ℃, time 180 min. Therefore, baking followed by leaching approach was adopted for dissolution of spent copper-chromium catalyst using H2SO4 to enhance the metal leaching efficiency. At the optimum baking-leaching condition i.e. baking time 2 h, baking temperature 300 ℃, baking acid concentration 0.5 M, leaching temperature 35 ℃, time 60 min, [H2SO4] 4%, P.D. 2.5%, the extraction of copper and chromium was 99.9% and 1.2%, respectively, ensuring the selective dissolution of copper. The XRD and Fe-SEM-Edax characterization analysis of typical samples (original, baked mass and typical residue) were compared and reported. The XRD and Fe-SEMEdax analysis of the baked mass indicated the complete sulfation of copper and chromium by H2SO4 yielding CuSO4 (H2O) and (Cr)2(SO4)3, respectively in solid phase. The absence of XRD peaks corresponding to CuSO4·H2O in the final typical leach residue (obtained at optimum baking-leaching condition) confirmed the complete dissolution of copper from Cu-Cr catalyst.
  1. Marafi M, Stanislaus A, Resour. Conserv. Recycl., 52, 859 (2008)
  2. Marafi M, Stanislaus A, Resour. Conserv. Recycl., 53, 1 (2008)
  3. Mecucci A, Scott K, J. Chem. Technol. Biotechnol., 77(4), 449 (2002)
  4. Antonetti P, Flitris Y, Flamant G, Hellio H, Gauthier D, Granier B, J. Hazard. Mater., 108(3), 199 (2004)
  5. Lee CH, Chang CT, Fan KS, Chang TC, J. Hazard. Mater., 114(1-3), 93 (2004)
  6. Siemens RE, Jong BW, Russel JH, Resour. Conserv. Recycl., 9, 189 (1986)
  7. Dunbar RE, Arnold MR, Ind. Eng. Chem. Anal. Ed., 16, 441 (1944)
  8. Adkins H, Burgoyne EE, Schneider HJ, J. Am. Chem. Soc., 72, 2626 (1950)
  9. Valdes-Solis T, Marban G, Fuertes AB, Catal. Today, 116(3), 354 (2006)
  10. Wang ZF, Xi JY, Wang WP, Lu GX, J. Mol. Catal. A-Chem., 191(1), 123 (2003)
  11. Xanthopoulou G, Vekinis G, Appl. Catal. B: Environ., 19(1), 37 (1998)
  12. Stegenga S, Soest RV, Capteijn F, Moulijn JA, Appl. Catal. B: Environ., 2, 257 (1993)
  13. Trimm DL, Appl. Catal. A: Gen., 212(1-2), 153 (2001)
  14. Corrigan PJ, King RM, Vandiest SA, US Patent 4 (1985) 533,648.
  15. Habermann CE, US Patent 3 (1972) 645,913.
  16. Cheng WH, Appl. Catal. B: Environ., 7(1-2), 127 (1995)
  17. Kim HI, Park KH, Mishra D, Hydrometallurgy, 98, 192 (2009)
  18. Park KH, Kim HI, Parhi PK, Mishra D, Nam CW, Park JT, Kim DJ, J. Ind. Eng. Chem., 18, 2035 (2012)
  19. Swooropa S, Ghosh MK, Sanjay K, Mishra BK, Hydrometallurgy, 136, 8 (2013)
  20. Kim HI, Park KH, Mishra D, J. Hazard. Mater., 166(2-3), 1540 (2009)
  21. Barik SP, Park KH, Parhi PK, Park JT, Nam CW, Sep. Purif. Technol., 101, 85 (2012)
  22. Sasikumar C, Rao DS, Srikanth S, Ravikumar B, Mukhopadhyay NK, Mehrotra SP, Hydrometallurgy, 75, 189 (2004)
  23. Welham NJ, Llewellyn DJ, Miner. Eng., 11(9), 827 (1998)
  24. Majima H, Awakura Y, Enami K, Ueshima H, Hirato T, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 20, 573 (1989)
  25. Geveci A, Topkaya Y, Ayhan E, Miner. Eng., 15(11), 885 (2002)
  26. Vardar E, Eric RH, Letowski FK, Miner. Eng., 7, 605 (1994)