화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 704-710, January, 2015
Impact of sorption functional media (SFM) from zeolite tailings on the removal of ammonia nitrogen in a biological aerated filter
E-mail:
Haydite and sorption functional media (SFM),made of clinoptilolite tailings, were used as filter media for biological aerated filter (BAF) to treat synthetic wastewater in parallel. The aim of this work was to evaluate impact of SFM on the removal of ammonia nitrogen in a biological aerated filter reactor under ammonium nitrogen shock loads. It could be demonstrated that: (1) the BAF with SFMpresented higher ammonia nitrogen removal efficiency than that with haydite; (2) during the phase of higher influent concentrations SFMs were collecting ammonia nitrogen and can buffer ammonia nitrogen loads and dampen the effluent concentration of ammonia nitrogen; (3) when the influent concentration decreases ammonia nitrogen will desorb from the SFM and can be utilized by the nitrifying bacteria growing on the SFM. Therefore, with the SFM application existing BAF unites can be upgraded and the stability of the operation process of BAF can be improved significantly.
  1. Mendoza-Espinosa L, Stephenson T, Environ. Eng. Sci., 16, 201 (1999)
  2. Feng Y, Yu YZ, Duan QA, Tan JA, Zhao CH, Desalination, 263(1-3), 146 (2010)
  3. Qiu LP, Zhang SB, Wang GW, Du MA, Bioresour. Technol., 101(19), 7245 (2010)
  4. Yan G, Xu X, Yao LR, Lu LQ, Zhao TT, Zhang WY, Bioresour. Technol., 102(7), 4628 (2011)
  5. Oldenburg M, Sekoulov I, Water Sci. Technol., 32, 199 (1995)
  6. Farabegoli G, Chiavola A, Rolle E, J. Hazard. Mater., 171(1-3), 1126 (2009)
  7. Sang JQ, Zhang XH, Li LZ, Wang ZS, Water Res., 37, 4711 (2003)
  8. Picanco AP, Vallero MVG, Gianotti EP, Zaiat M, Blundi CE, Water Sci. Technol., 44, 197 (2001)
  9. Velten S, Boller M, Koster O, Helbing J, Weilenmann H, Water Res., 45, 6347 (2011)
  10. Tian WH, Wen XH, Qian Y, China Water Wastewater, 18, 13 (2002)
  11. Wang ZY, Ye ZF, Zhang MH, Bai X, Process Biochem., 45, 993 (2010)
  12. Zhang XL, Zhang S, He F, Cheng SP, Liang W, Wu ZB, Fresenius Environ. Bull., 16, 1468 (2007)
  13. Koon JH, Kaufman WJ, J. Water Pollut. Control Fed., 47, 448 (1975)
  14. Booker NA, Cooney EL, Priestly AJ, Water Sci. Technol., 34, 17 (1996)
  15. Englert AH, Rubio J, Int. J. Miner. Process., 75(1-2), 21 (2005)
  16. Chmielewska-Horvathova E, Konecny J, Bosan Z, J. Water Wastewater Res., 5, 269 (1994)
  17. Cintoli R, Sabatino BD, Galeotti L, Bruno G, Water Sci. Technol., 32, 73 (1995)
  18. Sarioglu M, Sep. Purif. Technol., 41(1), 1 (2005)
  19. Baykal BB, Guven DA, Water Sci. Technol., 35, 47 (1997)
  20. Ji GD, Tong JJ, Tan YF, Bioresour. Technol., 102(2), 550 (2011)
  21. Feng Y, Qi JY, Chi LY, Wang D, Wang ZY, Li K, Li X, J. Hazard. Mater., 246, 61 (2013)
  22. Kent TD, Fitzpatrick CSB, Williams SC, Water Sci. Technol., 34, 363 (1996)
  23. Albuquerque A, Contribution to the study of residual carbon removal in downflow biological packed beds, (Ph.D. thesis), University of Beira Interior, Covilha, Portugal, p. 469 (in Portuguese). (2003)
  24. Lei G, Qi B, Wang Z, Wang J, J. Environ. Pollut., 37, 186 (2009)
  25. Ha J, Ong S, Surampalli R, Environ. Eng. Res., 15, 79 (2010)
  26. He SB, Xue G, Kong HN, J. Hazard. Mater., 143(1-2), 291 (2007)
  27. State Environmental Protection Administration of China, Monitoring and Analysis Methods of Water and Wastewater, 4th ed., China Environmental Science Press, Beijing (2003)
  28. Harremoes P, Haarbo A, Winther-Nielsen M, Thirsing C, Water Sci. Technol., 38, 219 (1998)
  29. Beccari M, Pinto ACD, Ramadori R, Tomei MC, Water Res., 26, 1099 (1992)
  30. Antonio A, Jacek M, Krishna P, Ecol. Eng., 44, 44 (2012)
  31. He SB, Xue G, Kong HN, J. Environ. Sci., 18, 242 (2006)
  32. Chang WS, Hong SW, Park J, Process Biochem., 37, 693 (2002)