화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 754-759, January, 2015
Synthesis of CuInSe2 nanoparticles in an oleic acid solution for application in thin film solar cells
E-mail:
CuInSe2 (CIS) nanoparticles were synthesized by a solution process using copper chloride, indium chloride and selenium as the precursors and oleic acid as the solvent. The synthesized CIS nanoparticles were characterized by XRD, SEM-EDS, and UV-vis spectroscopy. The lattice parameters of the CIS nanoparticles increased with increasing reaction temperature. The band gap energies of the CIS nanoparticles ranged from 0.954 to 0.984 eV. Ga could not be incorporated into the CIS nanoparticles regardless of high Ga concentration. The atomic ratio of Cu in the CIS nanoparticles increased with increasing Ga content in the precursor solutions, while those of Se and In decreased.
  1. Guillemoles JF, Rau U, Kronik L, Schock HW, Cahen D, Adv. Mater., 11(11), 957 (1999)
  2. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M, Prog. Photovol. Res. Appl., 19, 894 (2011)
  3. Tuttle JR, Contreras MA, Gillespie TJ, Ramanathan KR, Tennant AL, Keane J, Gabor AM, Noufi R, Prog. Photovol. Res. Appl., 3, 235 (1995)
  4. Lakshmikumar ST, Rastogi AC, Sol. Energy Mater. Sol. Cells, 32, 7 (1994)
  5. Kaelin M, Rudmann D, Tiwari AN, Sol. Energy, 77(6), 749 (2004)
  6. Shirakata S, Terasako T, Kariya T, J. Phys. Chem. Solids, 66, 1970 (2005)
  7. Park JH, Afzaal M, Kemmler M, O’Brien P, Otway DJ, Raftery J, Waters J, J. Mater. Chem., 13, 1942 (2003)
  8. Zhang L, Liang J, Peng SJ, Shi YH, Chen J, Mater. Chem. Phys., 106(2-3), 296 (2007)
  9. GUILLEMOLES JF, LUSSON A, COWACHE P, MASSACCESI S, VEDEL J, LINCOT D, Adv. Mater., 6(5), 376 (1994)
  10. Malik MA, O'Brien P, Revaprasadu N, Adv. Mater., 11(17), 1441 (1999)
  11. Guo Q, Kim SJ, Kar M, Shafarman WN, Birkmire RW, Stach EA, Agrawal R, Hillhouse HW, Nano Lett., 8, 2982 (2008)
  12. Tang J, Hinds S, Kelley SO, Sargent EH, Chem. Mater., 20, 6906 (2008)
  13. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, Dodabalapur A, Barbara PF, Korgel BA, J. Am. Chem. Soc., 130(49), 16770 (2008)
  14. Chiang MY, Chang SH, Chen CY, Yuan FW, Tuan HY, J. Phys. Chem. C, 115, 1592 (2011)
  15. Zhong H, Li Y, Ye M, Zhu Z, Zhou Y, Yang C, Li Y, Nanotechnology, 18, 025602 (2007)
  16. Wang YHA, Pan C, Bao N, Gupta A, Solid State Sci., 11, 1961 (2009)
  17. Wang JJ, Wang YQ, Cao FF, Guo YG, Wan LJ, J. Am. Chem. Soc., 132(35), 12218 (2010)
  18. Kwon SC, Hyeon T, Acc. Chem. Res., 41, 1696 (2008)
  19. Stanbery BJ, Crit. Rev. Solid State Mater. Sci., 27, 73 (2002)
  20. Park J, Joo J, Kwon SG, Jang Y, Hyeon T, Angew. Chem.-Int. Edit., 46, 4630 (2007)
  21. Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I, J. Am. Chem. Soc., 124(10), 2305 (2002)
  22. Mitzi DB, Yuan M, Liu W, Kellock AJ, Chey SJ, Deline V, Schrott AG, Adv. Mater., 20(19), 3657 (2008)