화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 792-796, January, 2015
CO2 sequestration by aqueous mineral carbonation of limestone in a supercritical reactor
E-mail:
Although mineral carbonation is a permanent and safe option for CO2 sequestration, it is unfeasible because of its slow reaction rate. Hence, it is necessary to identify amore effective process. The lab-scale study reported here was used to improve the carbonation efficiency using the pressure, temperature, time, and liquid-to-solid ratio variables. CO2 uptake is calculated according to the carbon content of a product by elemental analysis. These results indicate that the carbonation conversion has been enhanced by raising temperature into the range in which H2O exists in the liquid phase and that high pressure had no clear effect.
  1. IEA (International Energy Agency), World Energy Statistics, IEA (International Energy Agency), France, 2013.
  2. IPCC 2007, Climate change 2007: the physical science basis., in: Fourth Assessment Report, IPCC, Secretariat, Geneva, Switzerland, 2007.
  3. IEA (International Energy Agency), World Energy Outlook, IEA (International Energy Agency), France, 2010.
  4. Chae KS, Lee SPSWY, Matsuoka T, J. Korean Soc. Rock Mech., 20, 309 (2010)
  5. Bachu S, Prog. Energy Combust. Sci., 34(2), 254 (2008)
  6. IPCC, Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge, 2005.
  7. Chae SC, Jang YN, Ryu KW, J. Geol. Soc. Korea, 45, 527 (2009)
  8. LACKNER KS, WENDY CH, BUTT DP, JOYCE EL, SHARP DH, Energy, 20(11), 1153 (1995)
  9. Huijgen WJJ, Comans RNJ, Carbon dioxide sequestration by mineral carbonation, Lit. Rev. Update (2003-2004), ECN (Energy research Centre of the Netherlands).
  10. Juvekar VA, Shrama MM, Chem. Eng. Sci., 28, 825 (1973)
  11. Xu BA, Giles DE, Ritchie IM, Hydrometallurgy, 48, 205 (1998)
  12. Rau GH, Caldeira K, Energy Conv. Manag., 40(17), 1803 (1999)
  13. Park AHA, Jadhav R, Fan LS, Can. J. Chem. Eng., 81(3-4), 885 (2003)
  14. Al-Rawajfeh AE, J. Ind. Eng. Chem., 16(6), 1050 (2010)
  15. Jang NH, Shim HM, Hua XL, Kim HT, J. Korean Ind. Eng. Chem., 19(5), 526 (2008)
  16. Jang NH, Park SK, Shim HM, Kim HT, Appl. Chem. Eng., 21(1), 24 (2010)
  17. Escardino A, Garcı´a-Ten J, Feliu C, Saburit A, Cantavella V, J. Ind. Eng. Chem., 19(3), 886 (2013)
  18. Dri M, Sanna A, Maroto-Valer MM, Appl. Energy, 113, 515 (2014)
  19. Fernandez Bertos M, Simons SJR, Hills CD, Carey PJ, J. Hazard. Mater., 112(3), 193 (2004)
  20. Li X, Bertos MF, Hills CD, Carey PJ, Waste Manage., 27, 1200 (2007)
  21. Ahn JW, Yoo KS, J. Korean Inst. Res. Recycl., 18, 3 (2009)
  22. Li Z, Fang F, Tang X, Cai N, Energy Fuels, 23, 2473 (2012)
  23. Deutsch WJ, Groundwater Geochemistry: Fundamentals and Applications to Contamination, Lewis Publishers, Boca Raton, FL, 1997.
  24. Asavapisit S, Fowler G, Cheeseman CR, Cem. Concr. Res., 27, 1249 (1997)
  25. Klemm WA, Berger RL, Cem. Concr. Res., 2, 567 (1972)
  26. Chae GT, Yun ST, Choi BY, Kim KJ, Shevalier M, Econ. Environ. Geol., 38, 1 (2005)
  27. Stumm W, Morgan JJ, Aquatic Chemistrys Chemical Equilibria and Rates in Natural Waters, John Wiley and Sons Inc., New York, NY, 1996.
  28. Iizuka A, Fujii M, Yamasaki A, Yanagisawa Y, Ind. Eng. Chem. Res., 43(24), 7880 (2004)
  29. Katsuyama Y, Yamasaki A, Iizuka A, Fujii M, Kumagai K, Yanagisawa Y, Environ. Prog., 24 (2005)
  30. Montes-Hernandez G, Renard F, Geoffroy N, Charlet L, Pironon J, J. Cryst. Growth, 308(1), 228 (2007)
  31. Huijgen WJJ, Witkamp GJ, Comans RNJ, Chem. Eng. Sci., 61(13), 4242 (2006)
  32. Han K, Rhee CH, Chun HD, Korean Chem. Eng. Res., 49(2), 137 (2011)
  33. Rendek E, Ducom G, Germain P, J. Hazard. Mater., 128(1), 73 (2006)
  34. Uibu M, Velts O, Kuusik R, J. Hazard. Mater., 174(1-3), 209 (2010)