화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 1214-1218, January, 2015
Hydrothermal extraction of α-Fe2O3 nanocrystallite from hematite ore
E-mail:
α-Fe2O3 nanocrystallite has been extracted from its ore raw material by using simple chemical method. Mineralogical and chemical compositions of the raw material were investigated using X-ray diffraction (XRD), infrared (IR) and X-ray fluorescence (XRF) techniques. Also, thermal behavior including thermogravimetry (TG) and differential thermal analysis (DTA) of the raw material was examined. Scherrer’s equation and XRD data were used to determinate the crystallite size and phase composition of the extracted hematite nanocrystallite. Morphology of the extracted α-Fe2O3 particles was tested using scanning electron microscope (SEM). About 96.80% of the total iron oxide present in the rawmaterial sample was extracted as α-Fe2O3 with the average crystallite size less than 100 nm. The extracted α-Fe2O3 nanocrystallite is considered as a promise material for great technological applications as ceramic humidity sensors, catalysts, pigments, ferrofluid, recording systems, etc.
  1. Mohapatra M, Anand S, Int. J. Eng. Sci. Technol., 2, 127 (2010)
  2. Xiong YJ, Li ZQ, Li XX, Hu B, Xie Y, Inorg. Chem., 43(21), 6540 (2004)
  3. Bharathi S, Nataraj D, Mangalaraj D, Masuda Y, Senthil K, Yong K, J. Phys. D-Appl. Phys., 43, 015501 (2010)
  4. Li L, Chu Y, Liu Y, Nanotechnology, 18, 105603 (2007)
  5. Yu R, Li Z, Wang D, Lai X, Xing C, Xing X, Solid State Sci., 11, 2056 (2009)
  6. Li Q, Zhang X, Mater. Lett., 62, 988 (2008)
  7. Perez-Maqueda L, Criado J, Real C, Subrt J, Bohacek J, J. Mater. Chem., 9, 1839 (1999)
  8. Lemine O, Superlattices Microstruct., 45, 576 (2009)
  9. Sarangi PP, Naik B, Ghosh NN, Powder Technol., 192(3), 245 (2009)
  10. Darezereshki E, Mater. Lett., 65, 642 (2011)
  11. Lee C, Jung S, Lee J, Mater. Lett., 62, 561 (2008)
  12. Cao S, Zhu Y, Zeng Y, J. Magn. Magn. Mater., 321, 3057 (2009)
  13. Belin T, Millot N, Bovet N, Gailhanou M, J. Solid State Chem., 180, 2377 (2007)
  14. Drbohlavova J, Hrdy R, Adam V, Kizek R, Schneeweiss O, Hubalek J, Sensors, 9, 2352 (2009)
  15. Hsing H, Yen F, Ceram. Int., 29, 1 (2003)
  16. Chaianansutcharit S, Mekasuwandumrong O, Praserthdam P, Ceram. Int., 33, 697 (2007)
  17. Khalil NM, Saad EE, Int. J. Eng. Innov. Technol., 2, 1 (2012)
  18. Fischer WR, Schwertmann U, Clays Clay Miner., 23, 33 (1975)
  19. Jarlbring M, Gunneriusson L, Hussmann B, Forsling W, J. Colloid Interface Sci., 285(1), 212 (2005)
  20. Walter D, Thermochim. Acta, 445(2), 195 (2006)
  21. Liu X, Fu S, Xiao H, Huang C, J. Solid State Chem., 178, 2798 (2005)
  22. Darezereshki E, Ranjbar M, Bakhtiari F, J. Alloy. Compd., 502, 257 (2010)
  23. Bakhtiari F, Darezereshki E, Mater. Lett., 65, 171 (2011)
  24. Zic M, Ristic M, Music S, Mater. Chem. Phys., 120(1), 160 (2010)
  25. Zic M, Ristic M, Music S, J. Alloy. Compd., 464, 81 (2008)
  26. Brown ASC, Hargreaves JSJ, Rijniersce B, Catal. Lett., 53(1-2), 7 (1998)
  27. Sidhu P, Clays Clay Miner., 36, 31 (1988)