화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 1246-1257, January, 2015
Hollow fiber membrane model for gas separation: Process simulation, experimental validation and module characteristics study
E-mail:,
Conceptual process simulations and optimization are essential in the design, operation and troubleshooting stages of a membrane-based gas separation system. Despite this, there are few mathematicalmodels/tools associated with a hollow fiber membrane module available in a commercial process simulator. A mathematical model dealing with the hollow fiber module characteristics that can be included within a commercial process simulator is needed to examine the performance and economics of a gas separation system. In this study, a hollow fiber membrane modelwas incorporated in Aspen HYSYS as a user defined unit operation for the study of carbon dioxide separation from methane. The hollow fibermembrane model was validated experimentally. The study of a double stage membrane module with a permeate recycle, which was proposed to be the optimal configuration in previous studies, was extended to consider the effects of the module characteristics (such as the fiber length, radius of the fiber bundle, diameter of the fibers, and porosity) on the process performance and economics. The gas processing cost (GPC) increased with increasing fiber length and bundle radius, and decreased with increasing outer diameter of the fibers and porosity. At the same time, the separation efficiency (product quality) was also dependent on these module parameters. Therefore, the tradeoff for the hollow fiber membrane module characteristics needs to be determined based on the minimum GPC with respect to the desired product purity.
  1. Baker RW, Membrane Technology and Applications, 2nd ed., John Wiley & Sons, Chichester, 2004.
  2. Drioli E, Giorno L, Membrane Operations, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009.
  3. Chowdhury MHM, Feng XS, Douglas P, Croiset E, Chem. Eng. Technol., 28(7), 773 (2005)
  4. Geankoplis CJ, Transport Processes and Separation Process Principles (Includes Unit Operations), 4th ed., Prentice Hall Professional Technical Reference, New Jersey, 2003.
  5. Wankat PC, Separation Process Engineering, 2nd ed., Prentice-Hall, New Jersey, 2007.
  6. Katoh T, Tokumura M, Yoshikawa H, Kawase Y, Sep. Purif. Technol., 76(3), 362 (2011)
  7. Saidi M, Heidarinejad S, Rahimpour HR, Talaghat MR, Rahimpour MR, J. Nat. Gas Sci. Eng., 18, 274 (2014)
  8. Marriott JI, Sorensen E, Bogle IDL, Comput. Chem. Eng., 25(4-6), 693 (2001)
  9. Kovvali AS, Vemury S, Krovvidi KR, Khan AA, J. Membr. Sci., 73, 1 (1992)
  10. Weller S, Steiner WA, Chem. Eng. Prog., 46, 585 (1950)
  11. Pan CY, AIChE J., 32, 2020 (1986)
  12. Thorman JM, Rhim H, Hwang ST, Chem. Eng. Sci., 30, 751 (1975)
  13. Antonson CR, Gardner RJ, King CF, Ko DY, Ind. Eng. Chem. Process Des. Dev., 16, 463 (1977)
  14. Chern RT, Koros WJ, Fedkiw PS, Ind. Eng. Chem. Process Des. Dev., 24, 1015 (1985)
  15. Thundyil MJ, Koros WJ, J. Membr. Sci., 125(2), 275 (1997)
  16. Coker DT, Freeman BD, Fleming GK, AIChE J., 44(6), 1289 (1998)
  17. Zhao SY, Li ZQ, Liu Y, Wang LE, Desalination, 233(1-3), 310 (2008)
  18. Lemanski J, Lipscomb GG, J. Membr. Sci., 167(2), 241 (2000)
  19. Khalilpour R, Abbas A, Lai ZP, Pinnau I, Chem. Eng. Res. Des., 91(2), 332 (2013)
  20. Sohrabi MR, Marjani A, Moradi S, Davallo M, Shirazian S, Appl. Math. Model., 35, 174 (2011)
  21. Amooghin AE, Shehni PM, Ghadimi A, Sadrzadeh M, Mohammadi T, J. Ind. Eng. Chem., 19(3), 870 (2013)
  22. Hysys A, Aspen HYSYS Customization Guide, Aspen Technology Inc., Burlington, USA, 2010.
  23. Lock SSM, Lau KK, Shariff AM, J. Ind. Eng. Chem., DOI: 10.1016/j.jiec.2014.03.017.
  24. Sahu JN, Rama Krishna Chava VS, Hussain S, Patwardhan AV, Meikap BC, J. Ind. Eng. Chem., 16(4), 577 (2010)
  25. Rautenbach R, Knauf R, Struck A, Vier J, Chem. Eng. Technol., 19(5), 391 (1996)
  26. Tessendorf S, Gani R, Michelsen ML, Comput. Chem. Eng., 20, S653 (1996)
  27. Davis RA, Chem. Eng. Technol., 25(7), 717 (2002)
  28. Arpornwichanop A, Koomsup K, Assabumrungrat S, J. Ind. Eng. Chem., 14(6), 796 (2008)
  29. Hussain A, Hagg MB, J. Membr. Sci., 359(1-2), 140 (2010)
  30. Nosratinia F, Ghadiri M, Ghahremani H, J. Ind. Eng. Chem., DOI: 10.1016/j.jiec.2013.10.065.
  31. Scholz M, Harlacher T, Melin T, Wessling M, Ind. Eng. Chem. Res., 52, 1079 (2012)
  32. Ahmad F, Lau KK, Shariff AM, Murshid G, Comput. Chem. Eng., 36, 119 (2012)
  33. Ahmad F, Lau KK, Shariff AM, Yeong YF, J. Membr. Sci., 430, 44 (2013)
  34. Jin HG, Han SH, Lee YM, Yeo YK, Korean J. Chem. Eng., 28(1), 41 (2011)
  35. Kaldis SP, Kapantaidakis GC, Papadopoulos TI, Sakellaropoulos GP, J. Membr. Sci., 142(1), 43 (1998)
  36. Qi RH, Henson MA, J. Membr. Sci., 148(1), 71 (1998)
  37. Rautenbach R, in: Porter MC (Ed.), Process Design and Optimization, William Andrew, Norwich, New York, 1990.
  38. Li DF, Wang R, Chung TS, Sep. Purif. Technol., 40(1), 15 (2004)
  39. Reid RC, Prausnitz JM, Sherwood TK, The Properties of Gases and Liquids, McGraw-Hill, New York, 1977.
  40. Peters MS, Timmerhaus KD, Plant Design and Economics for Chemical Engineers, McGraw-Hill, New York, 1991.
  41. Hao J, Rice PA, Stem SA, J. Membr. Sci., 209(1), 177 (2002)
  42. Spillman RW, Barrett MG, Cooley TE, Gas Membrane Process Optimization, AIChE National Meeting, New Orleans, 1988.
  43. Babcock RE, Spillman RW, Goddin CS, Cooley TE, Energy Prog., 8, 135 (1988)
  44. Bhide BD, Stern SA, J. Membr. Sci., 81, 209 (1993)
  45. IEA, CO2 Capture and Storage, A Key Carbon Abatement Option, International Energy Agency (IEA), Organization for Economic Co-operation and Development (OECD), France, 2008.
  46. Tan LS, Lau KK, Bustam MA, Shariff AM, J. Nat. Gas Chem., 21, 7 (2012)
  47. Darman NH, Harun ARB, Technical Challenges and Solutions on Natural Gas Development in Malaysia, Beijing, 2006.
  48. Mahon HI, Google Patents (1966).
  49. Donald RR, Everett MW, Murdock MJ, Google Patents (1967).
  50. Mat NC, Lou Y, Lipscomb GG, Curr. Opin. Chem. Eng., 4, 18 (2014)
  51. Huang H, Schwab K, Jacangelo JG, Membr. Water Treat., 2, 121 (2011)
  52. Saxena S, Viscosity of Multicomponent Mixtures of Gases, 1973, p. 100.
  53. Viswanath DS, Viscosity of Liquids: Theory, Estimation, Experiment, and Data, Springer, New York, 2007.