화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.14, No.11, 813-820, November, 2004
리튬용융염계 산화성분위기에서 초합금의 고온 부식거동
Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere
E-mail:
The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of LiCl?Li 2 O under oxidation atmosphere was investigated at 650 ? Cfor72∼360 hours. At 3wt%ofLi 2 O , Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to 8wt%ofLi 2 O , Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed Li(Ni,Co)O 2 ,LiNiO 2 andLiTiO 2 andCr 2 O 3 on Haynes 263, Cr 2 O 3 ,NiFe 2 O 4 ,LiNiO 2 ,Li 2 NiFe 2 O 4 ,Li 2 Ni 8 O 1 0 and Ni on Haynes 75, Cr 2 O 3 ,(Al,Nb,Ti)O 2 ,NiFe 2 O 4 ,andLi 2 NiFe 2 O 4 on Inconel X-750 and Cr 2 O 3 ,NiFe 2 O 4 andCrNbO 4 on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.
  1. Kohl FJ, Santoro GJ, Steams CA, Fryburg GC, Rosner DE, J. Electrochem. Soc., 126, 1054 (1979)
  2. Kameswari S, Oxid. Met., 26, 33 (1973)
  3. Rahmel A, Engell HJ, Corrosion, 18, 320 (1969)
  4. Spiegel M, Biedenkipf P, Grabke HJ, Corros. Sci., 39, 1193 (1997)
  5. Mitsushima S, Kamiya N, Ota KI, J. Electrochem. Soc., 137, 2713 (1990)
  6. Kochergin MM, Stolyarava GI, J. Appl. Chem. USSR, 29, 789 (1956)
  7. Copson HR, J. Electrochem. Soc., 100, 257 (1953)
  8. Colom F, Bodalo A, Corros. Sci., 12, 73 (1972)
  9. Smyrl WH, Blanckburn MJ, Corrosion, 31, 370 (1972)
  10. Gill CB, Staumanis ME, Schlechten WE, J. Electrochem. Soc., 102, 42 (1955)
  11. Geobel JA, Pettit FS, Goward GW, Met. Trans., 4, 261 (1973)
  12. Turkdogan ET, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980) (1980)
  13. Allen GC, Wild RK, J. Electron. Spectroscopy, 5, 409 (1974)
  14. Ling S, Rahmel TA, Petkovic-Luton R, Oxid. Met., 40, 180 (1993)
  15. Stott FH, Wei FI, Mater. Sci. Tech., 5, 1140 (1989)
  16. Wood GC, Corros. Sci., 2, 173 (1962)
  17. Bouhanek K, Oquab D, Pieraggi B, Materials Science Forum, 251-254, 34 (1997)
  18. Lee YH, Ahn YS, J. Kor. Inst. Met. & Mater., 30, 1514 (1992)
  19. Smith WF, Structure and Properties of Engineering Alloys, 2nd, McGraw-Hill, p485, (1994) (1994)
  20. Fujikawa H, Murayama J, Tetsu-to-Hagane, 69, 678 (1983)
  21. Park SH, Lee YD, Lee YY, J. Kor. Inst. Met. & Mater., 33, 1323 (1995)
  22. Caplan D, Cohen M, Corrosion, 15, 141 (1959)
  23. Davis HH, Graham HC, Krernes IA, Oxid. Met., 3, 431 (1971)
  24. Stott TH, Wood GC, Shida Y, Whittle DP, Bastow BD, Corros. Sci., 21, 599 (1981)
  25. Skashita M, Sato N, Corros. Sci., 17, 473 (1977)
  26. Crayton CR, Lu YC, Corros. Sci., 29, 7 (1989)