화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.1, 2-12, January, 2015
Interpenetration enhancing of Chitosan-PEGLM double network (DN) hydrogel and its properties
E-mail:,
A series of polylactic acid-polyethylene glycol-polylactic acid diacrylate macromers (PEGLM) were synthesized, and a novel chitosan-PEGLM double network (DN) hydrogel was further successfully fabricated by the sequential interpenetrating technology with highly cross-linked chitosan as the rigid component and PEGLM as the flexible component. Their structures and components were characterized by 1H NMR, FTIR, and XRD. Their fracture morphology was investigated by SEM. It was interesting to found that the compressive strength of hydrogel wound reach its maximum value when the chitosan content was 10%, no matter what the molecular weight of PEGLM component was. What’s more, we found that the compressive strength of 6KL7 could reach 1.07 MPa at gel state, whose PEG segment molecular weight was 6,000, and polymerization degree of PLA was 7. The effects of glutaraldehyde ratio, polymerization degree of PLA, and molecular weight of PEG segment on the mechanical strength of DN hydrogels were also discussed in this article. To further strengthen DN hydrogels, the double network-linear (DNL) hydrogels were fabricated by introducing linear poly(vinyl alcohol) (PVA) into the DN hydrogels. The DN-L hydrogels exhibited better mechanical properties, with the compressive strength up to 1.45 MPa. These hydrogels may have prospective applications in the fields of wound dressing, artificial cartilage and tissue engineering scaffold materials which require high mechanical properties.
  1. DeRossi D, Polymer Gels-Fundamentals and Biomedical Applicatons, Kajiwara K, Osada Y, Yamauch A, Plenum Press, New York, pp 21-39 (1991)
  2. Schmedlen KH, Masters KS, West JL, Biomaterials, 23, 4325 (2002)
  3. Kavimandan NJ, Losi E, Peppas NA, Biomaterials, 27, 3846 (2006)
  4. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS, Biomaterials, 24, 801 (2003)
  5. Corkhill PH, Tighe BJ, Polymer, 31, 1526 (1990)
  6. Woods DL, Dimond M, Biol. Res. Nurs., 4, 104 (2002)
  7. Ma RY, Xiong DS, Miao F, Zhang JF, Peng Y, J. Biomed. Mater. Res. A, 93, 1016 (2010)
  8. Bryant SJ, Durand KL, Anseth KS, J. Biomed. Mater. Res. A, 67, 1430 (2003)
  9. Shibayama M, Takahashi H, Nomura S, Macromolecules, 28(20), 6860 (1995)
  10. Norisuye T, Masui N, Kida Y, Ikuta D, Kokufuta E, Ito S, Panyukov S, Shibayama M, Polymer, 43(19), 5289 (2002)
  11. Okumura Y, Ito K, Adv. Mater., 13(7), 485 (2001)
  12. Haraguchi K, Takehisa T, Adv. Mater., 14(16), 1120 (2002)
  13. Zhu MF, Liu Y, Sun B, Zhang W, Liu XL, Yu H, Zhang Y, Kuckling D, Adler HJP, Macromol. Rapid Commun., 27(13), 1023 (2006)
  14. Gong JP, Katsuyama Y, Kurokawa T, Osada Y, Adv. Mater., 15(14), 1155 (2003)
  15. Kaneko D, Tada T, Kurokawa T, Gong JP, Osada Y, Adv. Mater., 17(5), 535 (2005)
  16. Myung D, Koh WU, Ko JM, Hu Y, Carrasco M, Noolandi J, Ta CN, Frank CW, Polymer, 48(18), 5376 (2007)
  17. Weng LH, Gouldstone A, Wu YH, Chen WL, Biomaterials, 29, 2153 (2008)
  18. Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, Hedrick JL, Liao Q, Frank CW, Kingsbury K, Hawker CJ, Chem. Commun., 26, 2774 (2006)
  19. Ossipov DA, Hilborn J, Macromolecules, 39(5), 1709 (2006)
  20. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI, Macromolecules, 41(14), 5379 (2008)
  21. Sun TL, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP, Nat. Mater., 12(10), 932 (2013)
  22. Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z, Nature, 489, 133 (2012)
  23. Chandy T, Sharma CP, Biomater. Artif. Cells Immobilization Biotechnol., 19, 745 (1991)
  24. Chen KY, Liao WJ, Kuo SM, Tsai FJ, Chen YS, Huang CY, Yao CH, Biomacromolecules, 10(6), 1642 (2009)
  25. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG, J. Biomed. Mater. Res., 51, 586 (2000)
  26. Rao SB, Sharma CP, J. Biomed. Mater. Res., 34, 21 (1997)
  27. Bae IH, Jang WG, Lim HP, Park SW, Lee KM, Park YJ, Park IK, Jeong MH, Koh JT, Macromol. Res., 19(12), 1250 (2011)
  28. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A, Biomaterials, 21, 2155 (2000)
  29. Mi FL, Kuan CY, Shyu SS, Lee ST, Chang SF, Carbohydr. Polym., 41, 389 (2000)
  30. Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M, J. Biomed. Mater. Res., 49, 289 (2000)
  31. Sashiwa H, Shigemasa Y, Roy R, Macromolecules, 34(12), 3905 (2001)
  32. Li B, Huang LN, Wang XB, Ma JH, Xie F, Mater. Des., 32, 4543 (2011)
  33. Bryant SJ, Anseth KS, Biomaterials, 22, 619 (2001)
  34. Sawhney AS, Pathak CP, Hubbell JA, Macromolecules, 26, 581 (1993)
  35. Lopina ST, Wu G, Merrill EW, Griffith-Cima L, Biomaterials, 17, 559 (1996)
  36. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL, Biomaterials, 22, 3045 (2001)
  37. Harada A, Kataoka K, Science, 283, 65 (1999)
  38. Yilin C, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA, J. Biomater. Sci. Polym. E, 9, 475 (1998)
  39. Huh KM, Bae YH, Polymer, 40(22), 6147 (1999)
  40. Lee SJ, Kim SS, Lee YM, Carbohydr. Polym., 41, 197 (2000)
  41. Kurita K, Tomita K, Tada T, Ishii S, Nishimura SI, Shimoda K, J. Polym. Sci. Part A: Polym. Chem., 31, 485 (1993)
  42. Kim SS, Kim SJ, Moon YD, Lee YM, Polymer, 35(15), 3212 (1994)
  43. Brown HR, Macromolecules, 40(10), 3815 (2007)
  44. Zhao X, J. Mech. Phys. Solids, 60, 319 (2012)