Macromolecular Research, Vol.23, No.1, 45-52, January, 2015
Disulfonated copolyimide-boehmite nanocomposite fuel cell membranes with improved chemical resistance
E-mail:
Here we present a fundamental investigation of a conceptual strategy for simultaneously strengthening the tolerance to radical degradation, and improving the proton conduction capability, of polymer electrolyte membranes (PEMs) for fuel cells. A random disulfonated polyimide (SPI) containing 1 wt% of hydrophilic silica nanoparticles is used as a polymer matrix model, for dispersing boehmite nanoparticles, with the help of a non-ionic surfactant, L92. The mixture of boehmite and L92 in the micelle form results in enhanced boehmite distribution to a certain content. Boehmite nanoparticle acts as an inorganic scavenger to decompose hydrogen peroxide, known as a radical presursor, and as an inorganic conductor to transport protons owing to their acidity in PEMs. When proton conductivity and electrochemical single cell performance are considered, the optimal boehmite content chosen in this study is 2 wt% in the SPI matrix. This study provides valuable information on the rational design of chemically durable and proton-conductive fuel cell membrane materials.
Keywords:polymer nanocomposites;boehmite;hydrogen peroxide decomposition;fenton’s solution;proton conductivity
- Grant PM, Nature, 424, 129 (2003)
- Park CH, Shin DW, Lee YM, Kang PH, Nho YC, Macromol. Res., 17(11), 825 (2009)
- Panchenko A, Dilger H, Kerres J, Hein M, Ullrich A, Kaz T, Roduner E, Phys. Chem. Chem. Phys., 6, 2891 (2004)
- Fluck E, Hydrogen Peroxide, Springer-Verlag Berlin Heidelberg HmbH, Weinheim (1986)
- Yu TH, Sha Y, Liu WG, Merinov BV, Shirvanian P, Goddard WA, J. Am. Chem. Soc., 133(49), 19857 (2011)
- Roh SC, Hong JH, Kim CK, Macromol. Res., 20(2), 197 (2012)
- Schuster M, Kreuer KD, Andersen HT, Maier J, Macromolecules, 40(3), 598 (2007)
- Phu DS, Lee CH, Park CH, Lee SY, Lee YM, Macromol. Rapid Commun., 30(1), 64 (2009)
- Lee SY, Kang NR, Shin DW, Lee CH, Lee KS, Guiver MD, Li N, Lee YM, Energy Environ. Sci., 5, 9795 (2012)
- Shin DW, Lee SY, Kang NR, Lee KH, Guiver MD, Lee YM, Macromolecules, 46(9), 3452 (2013)
- Buchi FN, Inaba M, Schmidt TJ, Polymer Electrolyte Fuel Cell Durability, Springer, New York (2009)
- Hidaka Y, Iwasaki K, US Patent 2003/0113605 (2003)
- Xing DM, Zhang HM, Wang L, Zhai YF, Yi BL, J. Membr. Sci., 296(1-2), 9 (2007)
- Andrew NR, Knights SD, MacKinnon SM, McDermid SJ, Murray KA, Siyu Y, US Patent 7537857 (2009)
- Kim HJ, Litt MH, Shin EM, Nam SY, Macromol. Res., 12(6), 545 (2004)
- Lee CH, Hwang SY, Sohn JY, Park HB, Kim JY, Lee YM, J. Power Sources, 163(1), 339 (2006)
- Lee CH, Park HB, Park CH, Lee SY, Kim JY, McGrath JE, Lee YM, J. Power Sources, 195(5), 1325 (2010)
- Lee CH, Park HB, Chung YS, Lee YM, Freeman BD, Macromolecules, 39(2), 755 (2006)
- Park HB, Lee CH, Sohn JY, Lee YM, Freeman BD, Kim HJ, J. Membr. Sci., 285(1-2), 432 (2006)
- Lee CH, Min KA, Park HB, Hong YT, Jung BO, Lee YM, J. Membr. Sci., 303(1-2), 258 (2007)
- Rowland SP, Water in Polymers, American Chemical Society, Washington D.C. (1980)
- Kim DH, Kim SC, Macromol. Res., 16(5), 457 (2008)
- Lee CH, Park HB, Lee YM, Lee RD, Ind. Eng. Chem. Res., 44(20), 7617 (2005)
- Lee CH, VanHouten D, Lane O, McGrath JE, Hou J, Madsen LA, Spano J, Wi S, Cook J, Xie W, Oh HJ, Geise GM, Freeman BD, Chem. Mater., 23, 1039 (2011)
- Lee CH, Xie W, VanHouten D, McGrath JE, Freeman BD, Spano J, Wi S, Park CH, Lee YM, J. Membr. Sci., 392, 157 (2012)
- Li YX, Wang F, Yang J, Liu D, Roy A, Case S, Lesko J, McGrath JE, Polymer, 47(11), 4210 (2006)
- Peryea FJ, Kittrick JA, Clays Clay Miner., 36, 391 (1988)
- Kreuer KD, Paddison SJ, Spohr E, Schuster M, Chem. Rev., 104(10), 4637 (2004)
- Kreuer KD, Rabenau A, Weppner W, Angew. Chem. Int. Ed., 21, 208 (1982)
- Hunter RJ, Introduction to Modern Colloid Science, O.S. Publications, Oxford University Press, Oxford (1993)
- Binks BP, Lumsdon SO, PCCP, 1, 3007 (1999)