화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.2, 338-345, March, 2015
바이폴라막 제조를 위한 폴리에테르이미드의 아민화 합성 및 표면불소화를 통한 차아염소산 생성
Synthesis of Aminated Poly(ether imide) for the Preparation of Bi-polar Membranes and Their Application to Hypochlorite Production through the Surface Direct Fluorination
E-mail:
초록
폴리페닐렌옥사이드(PPO)와 폴리에테르이미드(PEI)에 대해 각각 설폰화(SPPO) 및 아민화(APEI) 반응이 이루어졌다. SPPO와 APEI의 특성평가를 위하여 FTIR, 열무게분석(TGA), 팽윤도, 이온교환용량(IEC) 및 이온전도도 등에 대한 측정을 하였다. 표면불소화를 실시한 후 표면불소화된 SPPO와 APEI 막과 불소화하지 않은 막과의 차이점을 알아보기 위하여 위에서 실시한 특성평가를 다시 수행하여 비교하였다. SPPO막의 이온교환용량을 고정시킨 후 APEI의 이온교환용량을 변경하면서 전체적으로 3개 유형의 바이폴라막을 제조하였고, 이를 차염소산 발생을 위하여 여러 전류밀도 하에서 저농도 및 고농도 소금용액에 적용하였다. 표면불소화된 막의 차염소산 생성 농도는 APEI의 이온교환용량에 의존하며 80 mA/m2에서 차염소산 농도 491-692 ppm의 결과를 얻었으며, 5 mA/m2에서 18- 28 ppm의 차염소산 농도를 나타내었으며 내구성이 매우 상승된 것을 보여 주었다.
Poly(phenylene oxide) (PPO) and polyether imide (PEI) were sulfonated and aminated to create sulfonated poly(phenylene oxide) (SPPO) and aminated polyether imide (APEI), respectively. Characterization of the SPPO and APEI were performed via measurements of FTIR, thermogravimetry (TGA), swelling degree, ion exchange capacity (IEC), and ion conductivity. Next, the surfaces of these membranes were modified by surface fluorination at room temperature. The surface fluorinated SPPO and APEI membranes underwent characterization again for the mentioned measurements to determine any differences. The 3 types of bi-polar membranes were prepared by varying the IEC of the APEI at a fixed SPPO IEC value, which were applied to the low and high NaCl concentration of feed solution at the different current density, respectively. The hypochlorite concentration derived from the surface fluorinated membranes was dependent on the IEC of the APEI and ranged from 491 to 692 ppm at 80 mA/m2. At low current density of 5 mA/m2, the hypochlorite concentrations ranged from 18 to 28 ppm for the 4 hrs surface fluorinated membranes and their durability increased greatly.
  1. Xu TW, J. Membr. Sci., 263(1-2), 1 (2005)
  2. Beezina NP, Kononenko NA, Dyomina OA, Gnusin NP, Adv. Colloid Interface Sci., 139, 3 (2008)
  3. Strathmann H, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, Netherlands (2004)
  4. Zaviska F, Drogui P, Pablo G, Desalination, 296, 16 (2012)
  5. Savari S, Sachdeva S, Kumar A, J. Membr. Sci., 310(1-2), 246 (2008)
  6. Krstajic N, Nakic V, Spasojevic M, J. Appl. Electrochem., 21, 637 (1991)
  7. Wilhelm FG, Ph. Dissertation D, University of Twente (2001)
  8. Huang RYM, Kim JJ, J. Appl. Polym. Sci., 29, 4017 (1984)
  9. Kruczek B, Matsuura T, J. Membr. Sci., 146(2), 263 (1998)
  10. Rhim JW, Chowdhury G, Matsuura T, J. Appl. Polym. Sci., 76(5), 735 (2000)
  11. Wang GG, Weng YM, Chu D, Xie D, Chen RR, J. Membr. Sci., 326(1), 4 (2009)
  12. Komkova EN, Stamatialis DF, Strathmann H, Wessling M, J. Membr. Sci., 244(1-2), 25 (2004)
  13. Kim DS, Il Cho H, Kim DH, Lee BS, Lee BS, Yoon SW, Kim YS, Moon GY, Byun H, Rhim JW, J. Membr. Sci., 342(1-2), 138 (2009)
  14. Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM, J. Membr. Sci., 238(1-2), 143 (2004)
  15. Greenberg AE, Trussel RR, Clesceri LS, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, U.S.A. (1985)
  16. Pan Y, Huang YH, Liao B, Cong GM, J. Appl. Polym. Sci., 61(7), 1111 (1996)
  17. Honma I, Nishikawa O, Sugimoto T, Nomura S, Nakajima H, Fuel Cells, 2, 52 (2002)
  18. Dean JA, Lange’s Handbook of Chemistry, McGraw-Hill Professional, U.S.A (1999)
  19. Kharitonov AP, Moskvin YL, Teplyakov VV, Le Roux JD, J. Fluorine Chem., 93, 129 (1999)
  20. Kharitonov AP, Taege R, Ferrier G, Teplyakov VV, Syrtsova DA, Koops GH, J. Fluorine Chem., 126, 251 (2005)
  21. Kharitonov AP, J. Org. Coatings, 61, 192 (2008)
  22. Shin DH, Kim N, Lee YT, J. Membr. Sci., 376(1-2), 302 (2011)
  23. Rhim JW, Lee B, Park HH, Seo CH, Macromol. Res., 22(4), 361 (2014)
  24. Kharitonov AP, J. Fluorine Chem., 103, 123 (2000)