화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.2, 346-352, March, 2015
양이온 중합을 이용한 폴리알파올레핀의 미세구조 조절에 관한 연구
A Study on the Control of Microstructures of Polyalphaolefins via Cationic Polymerization
E-mail:
초록
폴리알파올레핀(PAO)은 유동점, 점도지수, 열/산화 안정성이 광유 기반의 윤활유보다 우수한 합성 윤활유이다. 본 연구에서는 1-펜텐, 1-헥센, 1-옥텐, 및 1-도데센을 단량체로 사용하고 세가지 종류의 알루미늄계 루이스 산촉매로 양이온 중합을 수행하여 다양한 PAO를 합성하였다. PAO 중합 성능과 제조된 PAO의 분자량, 동점도, 유동점과 점도지수를 다양한 중합 조건에서 조절할 수 있었다. 알킬 알루미늄 할라이드계 촉매가 기존의 AlCl3계 촉매에 비하여 촉매 성능이 우수하였다. PAO의 미세구조를 비행-시간형 질량분석기(TOF-MS) 해석을 통하여 PAO의 미세구조와 윤활유로의 성능(점도지수, 유동점)과의 상관관계를 규명하였다. 특히, PAO의 점도지수는 알파 올레핀의 탄소수 증가에 따라 상승하여, PAO의 분지길이가 점도지수와 밀접한 상관관계가 있음을 확인하였다.
Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in the terms of physical and chemical characteristics such as low pour point, high viscosity index (VI), and thermal and oxidation stability. Several kinds of PAOs have been synthesized by using 1-pentene, 1-hexene, 1-octene, or 1-dodecene as monomer with three kinds of aluminum-based Lewis acid catalysts via cationic polymerization. The control of the catalytic performance and physical properties of PAO such like molecular weight, kinematic viscosity, pour point, and viscosity index was done by changing polymerization parameters. The alkyl aluminum halide-based catalysts show better catalytic activity than that of the conventional AlCl3 catalyst. The microstructure of PAO was investigated by means of TOF-MS (time of flightmass spectroscopy) analysis in order to elucidate the correlation between the performances of the lubricant (VI, pour point) and the molecular structure of PAO. The VI of PAO increases with increases in the carbon number of α-olefin. In other words, the performances of PAO as a lubricant strongly depended on the branch length of PAO.
  1. Benda R, Bullen J, Polmer A, J. Syn. Lub., 13, 41 (1996)
  2. Murphy WR, Blain DA, Galiano-Roth AS, Galvin PA, J. Syn. Lub., 18, 301 (2002)
  3. DiMaio AJ, Baranski JR, Bludworth JG, Gillis DJ, U.S. Patent 6,858,767 (2005)
  4. Back SH, Kim BI, Cho YJ, Korean Patent 10-2001-0084965 (2001)
  5. Clarembeau M, U.S. Patent 6,646,174 (2003)
  6. Brennan JA, Hill C, U.S. Patent 3,382,291 (1968)
  7. Shubkin RL, Park O, U.S. Patent 3,781,128 (1973)
  8. Cupples BL, Heilman WJ, Kresge N, U.S. Patent 4,045,508 (1977)
  9. Loveless FC, U.S. Patent 4,041,098 (1977)
  10. Kitamura T, Tamura M, U.S. Patent 4,214,111 (1980)
  11. Hope KD, Twomey DW, Driver MS, Sterm DA, Collins JB, Harris TV, U.S. Patent 7,259,284 (2007)
  12. Surana P, Yang N, Nandapurkar PJ, U.S. Patent 7,550,640 (2009)
  13. Onopchenko A, Cupples BL, Kresge AN, Ind. Eng. Chem. Prod. Res., 22, 182 (1983)
  14. Scheuermann SS, Eibl S, Bartl P, Lub. Sci., 23, 221 (2011)
  15. Shubkin RL, Baylerian MS, Maler AR, Ind. Eng. Chem. Prod. Res., 19, 15 (1980)
  16. Gee JC, Small BL, Hope KD, J. Phys. Org. Chem., 25, 1409 (2012)
  17. Janiak C, Blank F, Macromol. Symp., 236, 14 (2006)
  18. Grumel V, Brull R, Pasch H, Raubenheimer HG, Sanderson R, Wahner UM, Macromol. Symp., 286, 480 (2001)
  19. Yoon JS, Lee DH, Park ES, Lee IM, Park DK, Jung SO, J. Appl. Polym. Sci., 75(7), 928 (2000)