화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.13, No.1, 1-5, January, 2003
반응성 CVD를 이용한 다결정 실리콘 기판에서의 CoSi 2 layer의 성장거동과 열적 안정성에 관한 연구
Growth Behavior and Thermal Stability of CoSi 2 Layer on Poly-Si Substrate Using Reactive Chemical Vapor Deposition
E-mail:
Uniform polycrystalline CoSi 2 layers have been grown in situ on a polycrystalline Si substrate at temperature near 625 ? C by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt, Co(η 5 -C 5 H 5 )(CO) 2 . The growth behavior and thermal stability of CoSi 2 layer grown on polycrystalline Si substrates were investigated. The plate-like CoSi 2 was initially formed with either (111), (220) or (311) interface on polycrystalline Si substrate. As deposition time was increasing, a uniform epitaxial CoSi 2 layer was grown from the discrete CoSi 2 plate, where the orientation of the CoSi 2 layer is same as the orientation of polycrystalline Si grain. The interface between CoSi 2 layer and polycrystalline Si substrate was always (111) coherent. The growth of the uniform CoSi 2 layer had a parabolic relationship with the deposition time. Therefore we confirmed that the growth of CoSi 2 layer was controlled by diffusion of cobalt. The thermal stability of CoSi 2 layer on small grain-sized polycrystalline Si substrate has been investigated using sheet resistance measurement at temperature from 600 ? C to 900 ? C . The CoSi 2 layer was degraded at 900 ? C . Inserting a TiN interlayer between polycrystalline Si and C oSi2 layers improved the thermal stability of CoSi 2 layer up to 900 ? C due to the suppression of the Co diffusion.
  1. Colgan EG, Gambino JP, Hong QZ, Mater. Sci. Eng. R, 16, 43 (1996)
  2. Inoue K, Mikagi K, Abiko H, Kikkawa T, IEDM Tech. Digest, 1995, 445 (1995)
  3. Hong QZ, Hong SQ, Dheurle FM, Harper JM, Thin Solid Films, 253(1-2), 479 (1994)
  4. Gambino JP, Colgan EG, Domenicucci AG, Cunningham B, J. Electrochem. Soc., 145(4), 1384 (1998)
  5. Chen W, Lin J, Banerjee S, Lee J, Meter. Res. Soc. Symp. Proc., 303, 81 (1999)
  6. Nygren S, Johansson S, J. Appl. Phys., 68, 1050 (1990)
  7. Lasky JB, Nakos JS, Cain OJ, Geiss DJ, IEEE Trans, Elect. Dev., ED-38, 262 (1991)
  8. Vaidya S, Murarka SP, Sheng TT, J. Appl. Phys., 58, 971 (1985)
  9. Sun WT, Lee HM, Liaw MC, Hsu CCH, Jpn. J. Appl. Phys., 37, 5854 (1998)
  10. Rhee HS, Jang TW, Ahn BT, Appl. Phys. Lett., 74, 1003 (1999)
  11. Rhee HS, Ahn BT, Appl. Phys. Lett., 74, 3176 (1999)
  12. Rhee HS, Ahn BT, J. Electrochem. Soc., 146(7), 2720 (1999)
  13. Xiao ZG, Rozgonyi GA, Canovai CA, Osburn CM, Mater. Res. Soc. Symp. Proc., 202, 101 (1991)
  14. Chen WM, Banerjee SK, Lee JC, Appl. Phys. Lett., 64(12), 1905 (1994)
  15. Dixit GA, Wei CC, Liou FT, Appl. Phys. Lett., 62, 357 (1993)