화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.13, No.1, 43-47, January, 2003
소오스/드레인 영역의 도펀트 양의 증가에 따른 코발트실리사이드의 물성변화
Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area
E-mail:
As and BF 2 dopants are implanted for the formation of source/drain with dose of 1 × 10 15 ions/ cm 2 ∼5 × 10 15 ions/ cm 2 then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 μm CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in CoSi 2 n + and CoSi 2 p V , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in CoSi 2 n + and CoSi 2 p + . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in CoSi 2 n + , while little variation was observed in CoSi 2 p + . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of CoSi 2 n + / and CoSi 2 / p + , which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13 μm process.
  1. Dai JY, Guo ZR, Tee SF, Tay CL, Er E, Redkar S, Appl. Phys. Lett., 78, 3091 (2001)
  2. Prokop J, Zybill CE, Veprek S, Thin Solid Films, 359(1), 39 (2000)
  3. Detavemier C, Van Meirhaeghe RL, Cardon F, J. Appl. Phys., 88, 133 (200)
  4. Hsia SL, Tan RY, Smith P, McGuire GE, J. Appl. Phys., 70, 1308 (1991)
  5. Lasky JB, Nakos JS, Cain OJ, Geiss PJ, IEEE Trans. Electron Devices, 38, 262 (1991)
  6. Kim HS, Ko DH, Bae DL, Fujihara K, Kang HK, IEEE Electron Device Lett., 20, 86 (1999)
  7. Chen J, Colinge JP, Flandre D, Gillon R, Raskin JP, Vanhoenacker D, J. Electrochem. Soc., 144(7), 2437 (1997)
  8. Tung RT, Appl. Surf. Sci., 117-118, 268 (1997)
  9. Zhang H, Poole J, Eller R, Keefe M, J. Vac. Sci. Technol. A, 17(4), 1904 (1999)
  10. Song OS, Ahn YS, J. Kor. Inst. Surf. Eng., 32, 389 (1999)
  11. Cheng HC, Lai WK, Liu HW, Juang MH, J. Electrochem. Soc., 145(10), 3590 (1998)
  12. Gas P, Thomas O, d'Heurle FM, Properties of Metal Silicides, p. 298, 14, ed. Maex K, Rossum MV, INSPEC, London UK, (1995) (1995)
  13. Mangelinck D, Cardenas J, d'Heurle FM, Svensson BG, Gas P, J. Appl. Phys., 86, 4908 (1999)
  14. Lauwers A, Wang QF, Deweerdt B, Maex K, Appl. Surf. Sci., 91, 12 (1995)
  15. Dass MLA, Fraser DB, Wei CS, Appl. Phys. Lett., 58, 1308 (1991)
  16. Sukegawa T, Tomita H, Fushida A, Goto K, Komiya S, Nakamura T, Jpn. J. Appl. Phys., 36, 6244 (1997)