Korean Journal of Materials Research, Vol.13, No.1, 43-47, January, 2003
소오스/드레인 영역의 도펀트 양의 증가에 따른 코발트실리사이드의 물성변화
Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area
E-mail:
As and BF 2 dopants are implanted for the formation of source/drain with dose of 1 × 10 15 ions/ cm 2 ∼5 × 10 15 ions/ cm 2 then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 μm CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in CoSi 2 n + and CoSi 2 p V , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in CoSi 2 n + and CoSi 2 p + . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in CoSi 2 n + , while little variation was observed in CoSi 2 p + . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of CoSi 2 n + / and CoSi 2 / p + , which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13 μm process.
Keywords:cobalt disilicide;Ti interlayer;sheet resistance;dopants distribution;dose;spike;ion implantation
- Dai JY, Guo ZR, Tee SF, Tay CL, Er E, Redkar S, Appl. Phys. Lett., 78, 3091 (2001)
- Prokop J, Zybill CE, Veprek S, Thin Solid Films, 359(1), 39 (2000)
- Detavemier C, Van Meirhaeghe RL, Cardon F, J. Appl. Phys., 88, 133 (200)
- Hsia SL, Tan RY, Smith P, McGuire GE, J. Appl. Phys., 70, 1308 (1991)
- Lasky JB, Nakos JS, Cain OJ, Geiss PJ, IEEE Trans. Electron Devices, 38, 262 (1991)
- Kim HS, Ko DH, Bae DL, Fujihara K, Kang HK, IEEE Electron Device Lett., 20, 86 (1999)
- Chen J, Colinge JP, Flandre D, Gillon R, Raskin JP, Vanhoenacker D, J. Electrochem. Soc., 144(7), 2437 (1997)
- Tung RT, Appl. Surf. Sci., 117-118, 268 (1997)
- Zhang H, Poole J, Eller R, Keefe M, J. Vac. Sci. Technol. A, 17(4), 1904 (1999)
- Song OS, Ahn YS, J. Kor. Inst. Surf. Eng., 32, 389 (1999)
- Cheng HC, Lai WK, Liu HW, Juang MH, J. Electrochem. Soc., 145(10), 3590 (1998)
- Gas P, Thomas O, d'Heurle FM, Properties of Metal Silicides, p. 298, 14, ed. Maex K, Rossum MV, INSPEC, London UK, (1995) (1995)
- Mangelinck D, Cardenas J, d'Heurle FM, Svensson BG, Gas P, J. Appl. Phys., 86, 4908 (1999)
- Lauwers A, Wang QF, Deweerdt B, Maex K, Appl. Surf. Sci., 91, 12 (1995)
- Dass MLA, Fraser DB, Wei CS, Appl. Phys. Lett., 58, 1308 (1991)
- Sukegawa T, Tomita H, Fushida A, Goto K, Komiya S, Nakamura T, Jpn. J. Appl. Phys., 36, 6244 (1997)