Korean Chemical Engineering Research, Vol.53, No.2, 205-210, April, 2015
초임계 이산화탄소를 이용한 Nannochloropsis sp. 미세조류로부터 바이오디젤 생산용 지질의 추출
Lipid Extraction from Nannochloropsis sp. Microalgae for Biodiesel Production Using Supercritical Carbon Dioxide
E-mail:
초록
본 연구에서는 미세조류인 Nannochloropsis sp.로부터 바이오디젤 생산용 지질을 얻기 위하여 유기용매 및 초임계 이산화탄소(SC-CO2)를 이용하여 추출을 수행하였다. SC-CO2 추출법으로 얻은 지질의 지방산메틸에스테르 함량은 58.31%로 높았으며, Bligh-Dyer 추출법은 18.0 wt.%의 가장 높은 조지방 수율을 나타내었다. SC-CO2 추출법에 극성을 높이기 위해 공용매로서 methanol을 사용한 결과, 조지방 수율 12.5 wt.%, 지방산메틸에스테르 함량 56.32%, 지방산메틸에스테르 수율 7.04 wt.%였으며, SC-CO2 만을 이용하는 추출 방법에 비하여 추출 시간을 2시간에서 30분으로 단축시킬 수 있었다. 따라서 미세조류에서 지질을 추출하는데 기존의 유기용매 추출법과 비교하여 SC-CO2 추출법이 친환경적이며, 효율적인 방법임을 확인하였다.
In this paper, microalgae lipid extractions were performed using conventional organic solvent and supercritical carbon dioxide (SC-CO2) for biodiesel-convertible lipid fractions. The highest levels (58.31%) of fatty acid methyl ester (FAME) content in the lipid extracted by SC-CO2 was obtained, and 18.0 wt.% crude lipid yield was achieved for Bligh-Dyer method. In the SC-CO2 extraction, methanol as a co-solvent was applied to increase the polarity of extract. The experimental results indicated that crude lipid yield, FAME content and yield extracted by combination of SC-CO2 with methanol were 12.5 wt.%, 56.32% and 7.04 wt.%, respectively, and this method could reduce the extraction time from 2 hour to 30 min when compared to SC-CO2 extraction. Therefore, SC-CO2 extraction is proven to be an environmentally-friendly and an effective method for lipid extraction from microalgae.
- Demirbas A, Energy Conv. Manag., 50(1), 14 (2009)
- Gavrilescu M, Chisti Y, Biotechnology Advances, 23, 471 (2005)
- Pulz O, Gross W, Appl. Microbiol. Biotechnol., 65(6), 635 (2004)
- Chisti Y, Biotechnology Advances, 25, 294 (2007)
- Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ, Curr. Opin. Biotechnol., 19, 430 (2008)
- Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B, Bioenergy Research, 1, 20 (2008)
- Lardon L, Helias A, Sialve B, Steyer P, Bernard O, Environ. Sci. Technol., 43(17), 6475 (2009)
- Lee HS, Jeon SG, Oh YK, Kim KH, Chung SH, Na JG, Yeo SD, Korean Chem. Eng. Res., 50(4), 672 (2012)
- Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14, 217 (2010)
- Kim JK, Um BH, Kim TH, Korean J. Chem. Eng., 29(2), 209 (2012)
- Mercer P, Amenta RE, European Journal of Lipid Science and Technology, 113, 539 (2011)
- Araujo GS, Matos LJBL, Fernandes JO, Cartaxo SJM, Goncalves LRB, Fermamdes FAN, Farias WRL, Ultrason. Sonochem., 20, 95 (2013)
- Shin HY, Ryu JH, Bae SY, Crofcheck C, Crocker M, Fuel, 130, 66 (2014)
- Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M, Tariq S, J. Supercrit. Fluids, 86, 57 (2014)
- Tang SK, Qin CR, Wang HG, Li SF, Tian SJ, J. Supercrit. Fluids, 57(1), 44 (2011)
- Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF, Inorg. Chim. Acta., 356, 328 (2003)
- Cheung PCK, Food Chem., 65, 399 (1999)
- Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R, European Journal of Lipid Science and Technology, 107, 381 (2005)
- Couto RM, Simoes PC, Reis A, Silva TLD, Martins VH, Sanchex-Vicente Y, Engineering in Life Sciences, 10(2), 158 (2010)
- Choi KJ, Nakhost Z, Krukonis VJ, Karel M, Food Biotechnology, 1, 268 (1987)
- Sajilata MG, Singhal RS, Kamat MY, J. Food Eng., 84(2), 321 (2008)
- Tang SK, Qin CR, Wang HG, Li SF, Tian SJ, J. Supercrit. Fluids, 57(1), 44 (2011)
- Kinney AJ, Clemente TE, Fuel Process. Technol., 86(10), 1137 (2005)