화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.2, 253-261, April, 2015
Dimethyl terephthalate와 diethylene glycol의 에스테르 교환 반응
Transesterification of Dimethyl Terephthalate with Diethylene Glycol
E-mail:
초록
DMT(dimethylterephthalate)와 DEG(diethylene glycol)의 에스테르 교환반응을 통하여 BHEET(bis-hydroxyethoxyethylterephthalate)을 생성하는 반응에 대하여 조사하였다. BHEET는 polyurethanr foam의 원료인 폴리에스터 폴리올의 단량체이다. DMT를 이용한 기존의 에스테르 교환 반응은 반응 중 생성 MeOH이 제거되는 반회분식 반응기를 사용하였다. 따라서 이러한 kinetics 연구에서는 역반응이 고려되지 않는다. 본 실험에서는 촉매로는 zinc acetate를 사용하였고, 소형 회분식 반응기를 통하여 DMT와 MeOH의 양을 정량하여 생성되는 MHEET와 BHEET를 추정하였다. 이 반응들에서 역반응을 고려한 보다 정확한 반응 kinetics를 조사하였다. 제안된 모델의 예측 값들이 실험값들과 잘 일치함을 보였다.
The kinetics of the transesterification of dimethyl terephthalate (DMT) with diethylene glycol (DEG) was studied in a batch reactor. bis-hydroxyethoxytethyl -terephthalate (BHEET), which is polyester polyol monomer, can be produced by the transesterification reaction. Zinc acetate was used as a catalyst. Previous kinetic studies was carried out in a semi-batch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the tranesterification reaction, which took the reverse reaction into account, were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous ones were obtained and found to have a good agreement between model predictions and experimental data. Effect of process variables on the esterification reaction was investigated based on the experimental and simulation results.
  1. Singh H, Sharma TP, Jain AK, J. Appl. Polym. Sci., 106(2), 1014 (2007)
  2. Lee YB, Choi SH, Choe KH, Seo WJ, Whang DH, Kim WN, KIGAS., 5(6), 69 (2002)
  3. Trovati G, Ap Sanches E, Neto SC, Mascarenhas YP, Chierice GO, J. Appl. Polym. Sci., 115(1), 263 (2010)
  4. Szycher M, “Szycher’s Handbook of Polyurethanes,” CRC press (1999)
  5. Choi SH, Polym. Sci. Technol., 10(5), 621 (1999)
  6. Han M, “Development of Feedstock recycling Technology from Low-grade Polyester Wastes,” R&D report of 21C Frontier Project (2006)
  7. Hubert F, Durand G, Tersac G, J. Appl. Polym. Sci., 72(3), 329 (1999)
  8. Choi KY, Polym. Eng. Sci., 27(22), 1703 (1987)
  9. Besnoin JM, Lei GD, Choi KY, AIChE J., 35(9), 1445 (1989)
  10. Santacesaria E, Trulli F, Minervini L, Diserio M, Tesser R, Contessa S, J. Appl. Polym. Sci., 54(9), 1371 (1994)
  11. Diserio M, Tesser R, Trulli F, Santacesaria E, J. Appl. Polym. Sci., 62(2), 409 (1996)
  12. Tomita K, Ida H, Polymer, 14(2), 55 (1973)
  13. Hsu J, Choi KY, J. Appl. Polym. Sci., 32, 3117 (1986)
  14. Hsu J, Choi KY, J. Appl. Polym. Sci., 33(2), 329 (1987)
  15. Yurramendi L, Barandiaran MJ, Asua JM, Polymer, 29(5), 871 (1988)
  16. Lee J, Cho I, Jo S, Cho M, Han M, Kang K, Korean Chem. Eng. Res., 51(1), 144 (2013)
  17. Liu Y, Wei M, Gao L, Li X, Mao L, Korean J. Chem. Eng., 30(5), 1039 (2013)
  18. Barandiaran MJ, Asua JM, J. Polym. Sci. A Polym. Chem., 27, 4241 (1989)
  19. Barandiaran MJ, Asua JM, Polymer, 31(7), 1352 (1990)