화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.164, 389-395, 2015
Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells
The anisotropic structure and unique surface properties of one-dimensional (1D) Pt-nanowire (PtNW) make it a promising new type of electrocatalyst for various catalyst applications, especially for fuel cells. However, due to the critical synthesis process, a finely tuning of the synthesis temperature for precisely controlling the morphology and distribution of PtNWs in catalyst electrodes still remains a grand challenge. In this work, we present the temperature-controlled growth of PtNWs with large-area 16 cm(2) carbon paper piece as a direct support. The relationship between the growth temperature and PtNW behavior is studied by physical characterization, and their catalytic activity is measured towards oxygen reduction reaction (ORR) by testing as the cathode in a hydrogen-air fuel cell. The results show that the growth temperature plays a vital role on the behavior of PtNWs thus influencing their properties. The catalyst electrode with PtNWs grown at 40 degrees C shows the best power performance. A possible mechanism for the influence of temperature on PtNW growth is suggested. The comparison with the state-of-the-art commercial TKK catalyst also shows a better performance and durability. The understanding gained in our work from PtNW catalyst electrode could aid in the design of other novel nanostructures in practical applications. (C) 2014 The Authors. Published by Elsevier B.V.