화학공학소재연구정보센터
Applied Energy, Vol.134, 506-518, 2014
Life cycle environmental impacts of UK shale gas
Exploitation of shale gas in the UK is at a very early stage, but with the latest estimates suggesting potential resources of 3.8 x 10(13) cubic metres - enough to supply the UK for next 470 years it is viewed by many as an exciting economic prospect. However, its environmental impacts are currently unknown. This is the focus of this paper which estimates for the first time the life cycle impacts of UK shale gas, assuming its use for electricity generation. Shale gas is compared to fossil-fuel alternatives (conventional gas and coal) and low-carbon options (nuclear, offshore wind and solar photovoltaics). The results suggest that the impacts range widely, depending on the assumptions. For example, the global warming potential (GWP100) of electricity from shale gas ranges from 412 to 1102 g CO2-eq./kWh with a central estimate of 462 g. The central estimates suggest that shale gas is comparable or superior to conventional gas and low-carbon technologies for depletion of abiotic resources, eutrophication, and freshwater, marine and human toxicities. Conversely, it has a higher potential for creation of photochemical oxidants (smog) and terrestrial toxicity than any other option considered. For acidification, shale gas is a better option than coal power but an order of magnitude worse than the other options. The impact on ozone layer depletion is within the range found for conventional gas, but nuclear and wind power are better options still. The results of this research highlight the need for tight regulation and further analysis once typical UK values of key parameters for shale gas are established, including its composition, recovery per well, fugitive emissions and disposal of drilling waste. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.