Applied Microbiology and Biotechnology, Vol.98, No.19, 8301-8312, 2014
Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus
The role of muramyl dipeptide (MDP) and tuftsin in oral immune adjustment remains unclear, particularly in a Lactobacillus casei (L. casei) vaccine. To address this, we investigated the effects of different repetitive peptides expressed by L. casei, specifically the MDP and tuftsin fusion protein (MT) repeated 20 and 40 times (20MT and 40MT), in mice also expressing the D antigenic site of the spike (S) protein of transmissible gastroenteritis virus (TGEV) on intestinal and systemic immune responses and confirmed the immunoregulation of these peptides. Treatment of mice with a different vaccine consisting of L. casei expressing MDP and tuftsin stimulated humoral and cellular immune responses. Both 20MT and 40MT induced an increase in IgG and IgA levels against TGEV, as determined using enzyme-linked immunosorbent assay. Increased IgG and IgA resulted in the activation of TGEV-neutralising antibody activity in vitro. In addition, 20MT and 40MT stimulated the differentiation of innate immune cells, including T helper cell subclasses and regulatory T (Treg) cells, which induced robust T helper type 1 and T helper type 17 (Th17) responses and reduced Treg T cell immune responses in the 20MT and 40MT groups, respectively. Notably, treatment of mice with L. casei expressing 20MT and 40MT enhanced the anti-TGEV antibody immune responses of both the humoral and mucosal immune systems. These findings suggest that L. casei expressing MDP and tuftsin possesses substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration, and it may be useful in oral vaccines against TGEV challenge.
Keywords:Muramyl dipeptide;Tuftsin;Lactobacillus casei;Transmissible gastroenteritis virus;Thelper cell