화학공학소재연구정보센터
Applied Surface Science, Vol.313, 784-793, 2014
Density functional theory study of water interactions on Mn-doped CeO2(111) surface
Spin-polarized density functional theory (DFT+ U) periodic calculations have been performed to study water adsorption and dissociation on the 12.5% Mn-doped CeO2(1 1 1) surface. Our results indicated that Mn cation is the surface active site for water adsorption and dissociation reactions. The H2O molecule preferably adsorbs on a Mn cation, causing some relaxation of the surface O-layer and, thus, facilitating the bonding of one of the H-H2O with the nearest oxygen atom. After overcoming an energy barrier of 0.46 eV, the water molecule could dissociate into OH and H species. The latter configuration is about 50% more exothermic than the molecular one, suggesting the Ce0.875Mn0.125O1.9375(1 1 1) surface would be easily hydroxylated under reaction conditions. In addition, the calculations showed that water adsorption on the Mn-doped CeO2(1 1 1) surface did not favor the creation of surface oxygen vacancies as it has been reported for pure CeO2(1 1 1). On the other hand, we created a surface oxygen defect in the slab with structural oxygen vacancies and computed water interactions on the reduced surface. Although, the adsorption of OH species in the O-hole caused many surface and subsurface atomic displacements, no changes in the oxidation state of Mn and Ce cations were detected. (C) 2014 Elsevier B.V. All rights reserved.