Applied Surface Science, Vol.320, 674-680, 2014
Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4
Activated carbons were produced from reedy grass leaves by chemical activation with H3PO4 in N2 atmosphere and their characteristics were investigated. The effects of activation temperature and time were examined. Adsorption capacity was demonstrated with BET and iodine number. Micropore volume and pore size distribution of activated carbons were characterized by N-2 adsorption isotherms. The surface area and iodine number of the activated carbons produced at 500 degrees C for 2 h were 1474 m(2)/g and 1128 mg/g, respectively. Thermal decomposition of pure reedy grass leaves and H3PO4-impregnated reedy grass leaves have been investigated with thermogravimetric/mass spectroscopy (TG-MS) technique. It was found that the temperature and intensity of maximum evolution of H2O and CO2 of H3PO4-impregnated reedy grass leaves were lower than that of pure reedy grass leaves. This implies that H3PO4 as an activating reagent changed the thermal degradation of the reedy grass leaves, stabilized the cellulose structure, leading to a subsequent change in the evolution of porosity. The results of X-ray photoelectron spectroscopy and Fourier-infrared spectroscopy analysis indicate that the produced activated carbons have rich functional groups on surface. (C) 2014 Published by Elsevier B.V.