Applied Surface Science, Vol.331, 234-240, 2015
Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide
Kaolinite intercalation complex with dimethyl sulfoxide (DMSO) was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry-differential scanning calorimetry (TG-DSC) combined with molecular dynamics simulation. The bands assigned to the OH stretching of inner surface of kaolinite were significantly perturbed after intercalation of DMSO into kaolinite. Additionally, the bands attributed to the vibration of gibbsite-like layers of kaolinite shifted to the lower wave number, indicating that the intercalated DMSO were strongly hydrogen bonded to the alumina octahedral surface of kaolinite. The slightly decreased intensity of 1031 cm(-1) and 1016 cm(-1) band due to the in-plane vibration of Si-O of kaolinite revealed that some DMSO molecules formed weak hydrogen bonds with the silicon tetrahedral surface of kaolinite. Based on the TG result of kaolinite-DMSO intercalation complex, the formula of Al2Si2O5(OH)(4)(DMSO)(0.7) was obtained, with which the kaolinite-DMSO complex model was constructed. The molecular dynamics simulation of kaolinite-DMSO complex directly confirmed the monolayer structure of DMSO in interlayer space of kaolinite, where the DMSO arranged almost parallel with kaolinite basal surface with all methyl groups being distributed near the interlayer midplane and oxygen atoms orienting toward to the alumina octahedral surface. The radial distribution function between kaolinite and intercalated DMSO verified the strong hydrogen bonds forming between hydroxyl hydrogen atoms of alumina octahedral surface and oxygen atoms of DMSO. Moreover, some methyl groups of DMSO were weakly hydrogen bonded to the oxygen atoms of silicon tetrahedral surface through the hydrogen atoms. The mean square displacement of DMSO oxygen atoms and hydrogen atoms in z direction kept unchanged during the simulation time because of the hydrogen-bond interaction between inner surface of kaolinite and DMSO, which constrained the mobility of intercalated DMSO in the direction normal to the kaolinite basal surface. (C) 2015 Elsevier B.V. All rights reserved.