화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.457, No.1, 71-76, 2015
Decorin in human oral cancer: A promising predictive biomarker of S-1 neoadjuvant chemosensitivity
We reported previously that decorin (DCN) is significantly up-regulated in chemoresistant cancer cell lines. DCN is a small leucine-rich proteoglycan that exists and functions in stromal and epithelial cells. Accumulating evidence suggests that DCN affects the biology of several types of cancer by directly/indirectly targeting the signaling molecules involved in cell growth, survival, metastasis, and angiogenesis, however, the molecular mechanisms of DCN in chemoresistance and its clinical relevance are still unknown. Here we assumed that DCN silencing cells increase chemosusceptibility to S-1, consisted of tegafur, prodrug of 5-fluorouracil. We first established DCN knockdown transfectants derived from oral cancer cells for following experiments including chemosusceptibility assay to S-1. In addition to the in vitro data, DCN knockdown zenografting tumors in nude mice demonstrate decreasing cell proliferation and increasing apoptosis with dephosphorylation of ART after S-1 chemotherapy. We also investigated whether DCN expression predicts the clinical responses of neoadjuvant chemotherapy (NAC) using S-1 (S-1 NAC) for oral cancer patients. Immunohistochemistry data in the preoperative biopsy samples was analyzed to determine the cut-off point for status of DCN expression by receiver operating curve analysis. Interestingly, low DCN expression was observed in five (83%) of six cases with complete responses to S-1 MAC, and in one (10%) case of 10 cases with stable/progressive disease, indicating that S-1 chemosensitivity is dramatically effective in oral cancer patients with low DCN expression compared with high DCN expression. Our findings suggest that DCN is a key regulator for chemoresistant mechanisms, and is a predictive immunomarker of the response to S-1 NAC and patient prognosis. (C) 2014 Elsevier Inc. All rights reserved.