Biotechnology and Bioengineering, Vol.111, No.2, 254-263, 2014
Severity Factor Coefficients for Subcritical Liquid Hot Water Pretreatment of Hardwood Chips
Single stage and multi-stage liquid hot water pretreatments of mixed hardwood pinchips were investigated at various severities (log R-0 3.65-4.81) to assess the efficiencies of the pretreatments with respect to achieving high pentose sugar yields and improved enzymatic digestibility of pretreated cellulose. We investigate the effect of pretreatment parameters that is, temperature, and time, as expressed in the severity factor, on the recovery of sugars and hydrolyzability of pretreated cellulose. We find the severity factor, in its widely used form, is an incomplete measure for evaluating the pretreatment efficiencies and predicting overall sugar yields when pretreatment temperatures above 200 degrees C are used. Corrections to the severity factor and its correlation to the measured pretreatment responses (% xylan solubilization, xylan recovery as fermentable sugars, cellulose enzymatic digestibility) indicate a greater influence of temperature on the pretreatment efficiencies than predicted by the commonly used severity factor. A low temperature, long residence time is preferred for hemicellulose dissolution during the pretreatment since the condition favors oligosaccharide and monomeric sugar formation over sugar degradation. On the contrary, high cellulose hydrolyzability is achieved with a high temperature (>200 degrees C), high severity pretreatment when pretreatment is followed by enzyme hydrolysis. In multi-stage pretreatment, the first low-severity pretreatment is optimized for solubilizing fast-hydrolyzing hemicellulose while minimizing formation of furans. The subsequent pretreatment is carried out at over 200 degrees C to recover the difficult-to-hydrolyze hemicellulose fraction as well as to increase susceptibility of pretreated cellulose to enzymes. High recovery (>92%) of hemicellulose-derived pentose sugars and enhanced enzymatic hydrolysis of pretreated cellulose (where >80% glucose yield results with 20 FPU 32 mg protein/g glucan or 10-13 mg/g initial hardwood) are achieved by applying a multi-stage pretreatment. This work shows how the severity equation may be used to obtain a single characteristic curve that correlate xylan solubilization and enzymatic cellulose hydrolysis as a function of severity at pretreatment temperatures up to 230 degrees C. (C) 2013 Wiley Periodicals, Inc.