Catalysis Today, Vol.246, 81-91, 2015
Role of shaping in the preparation of heterogeneous catalysts: Tableting and slip-casting of oxidation catalysts
The process and impact of shaping mixed vanadium aluminum (hydr)oxides, VAlOH and VAlO, respectively, and BiMo catalysts by tableting and slip-casting were examined. Graphite (G) was employed as a shaping agent for tableting. Without it tableting was impracticable. Graphite was found to enhance the mechanical resistance of VAlOH-xG and BiMo-xG and changed the surface area by increasing it for the non-porous BiMo and by decreasing it for the mesoporous VA1OH. In addition, graphite modified the catalytic performance despite changing neither the chemical nor the structural state of the base VAIO(H) and BiMo catalysts. A positive effect on the performance of VAlO-xG in propane oxidative dehydrogenation was found. It was proposed that catalytic active sites are formed on graphite during calcination. Conversely, graphite was harmful for non-calcined VAIOH-xG and BiMo-xG. On the other hand, the preparation of chemically and physically stable VAlO(H) suspensions for slip-casting was accomplished. Chemical stability was achieved at pHs near the isoelectric point of these catalysts. For physical stability, the use of a dispersing agent, poly(acrylic acid), combined with a control of the solids concentration was necessary. A simple and reliable method for preparing VAlOH and BiMo pellets by slip-casting was thus developed with the use of colloidal silica as binding agent. The so prepared pellets were mechanically resistant and kept the surface area of the base materials. A decrease in the surface concentration of the active metals due to surface active site masking by silicon for VAIOH-xSi and BiMo-xSi led to an inferior catalytic performance. (C) 2014 Elsevier B.V. All rights reserved.