화학공학소재연구정보센터
Current Microbiology, Vol.69, No.4, 580-585, 2014
Bacterial Community Survey of Solenopsis invicta Buren (Red imported fire Ant) Colonies in the Presence and Absence of Solenopsis invicta Virus (SINV)
Insect bacterial symbionts contribute to many essential biological functions of their hosts and can also influence host fecundity and fitness. The physiological contribution symbionts provide can aid in immune response and xenobiotic detoxification. Both of these immune factors can directly impact strategies aimed at managing insect populations. One biological control strategy that shows promise in insects is the use of single-stranded RNA viruses within the group Dicistroviridae. The Solenopsis invicta Virus (SINV; Dicistroviridae), a ssRNA virus, has been proposed as a potential biological control agent for the urban pest S. invicta Buren or red imported fire ant (RIFA). SINV has been shown to be prevalent in RIFA populations of Texas and Florida; however, mortality is associated with high viral load. In other insect microbe systems, presence of particular bacteria induced resistance against Dicistrovirus. If this type of relationship is present in the RIFA-SINV system, their bacterial community could reduce the effectiveness of SINV as a biological control system. The advantage of 454 pyro-sequencing is that it enables classification of unculturable bacteria. This study examines the bacterial community in brood, workers, and reproductive cast members from colonies with and without SINV infection. Manipulation of the bacterial community may alter virus infection and replication within the mid-gut. Understanding the differences in the microbial community of ant colonies may provide insights that will refine current efforts designing control strategies for this important urban pest.