화학공학소재연구정보센터
Electrochimica Acta, Vol.136, 138-145, 2014
Enhancement of CdSe film electrode PEC characteristics by metalloporphyrin/polysiloxane matrices
A facile and low-cost strategy to improve stability and conversion efficiency of CdSe film electrodes prepared by chemical bath deposition (CBD) onto FTO/glass substrates, is described. The naked CdSe film electrodes, with band gap value 1.8 eV, photo-corroded under the photoelectrochemical (PEC) working conditions and exhibited no photocurrent. The CdSe film peeled out in short times. Attempts made to enhance stability and efficiency of naked CdSe electrodes, by chemical etching or pre-scratching the FTO surface with fine sand-paper, failed to improve film PEC characteristics. Annealing the glass/FTO/CdSe film also failed to improve its PEC stability or efficiency. When coated with the electro-active species Tetra(-4-pyridyl)porphyrinatomanganese(III/II) sulfate embedded inside polysiloxane films (MnPyP/Polysil) the CdSe films did not peel out under the PEC conditions. The coated electrode (glass/FTO/CdSe/MnPyP/Polysil) clearly exhibited photocurrents. Pre-annealing the naked CdSe film at 350 degrees C, followed by coating with MnPyP/Polysil further enhanced the electrode PEC characteristics. Additional heating of the prepared glass/FTO/CdSe/MnPyP/Polysil electrode at 120 degrees C also enhanced its PEC characteristics. The mode of action of the MnPyP/Polysil coating has been attributed to its ability to behave as a charge transfer catalyst at the solid/liquid interface. The new technique described here could also be potentially valuable for other types of thin film electrode materials. (C) 2014 Elsevier Ltd. All rights reserved.