화학공학소재연구정보센터
Electrophoresis, Vol.35, No.17, 2429-2437, 2014
Effects of selected operational parameters on efficacy and selectivity of electromembrane extraction. Chlorophenols as model analytes
Effects of organic solvent type, pH value, and composition of donor/acceptor solution on the efficacy of electromembrane extraction (EME) were examined. For the first time, a comprehensive quantitative study, based also on measurements of electric charge passed through the EME system, was carried out, which demonstrates that apart from the pH value, also the nature of counter-ions in donor and acceptor solution plays a significant role in the electrically induced transfer of charged analytes across supported liquid membranes (SLMs). The EME transfer of model analytes correlated well with electrophoretic mobilities of inorganic cations, which were added to acceptor solutions during their alkalization with alkali metal hydroxides, and were highest for counter-cations with highest mobilities. Up to a 53-fold improvement of extraction efficiency was achieved for EMEs using optimized composition of donor (alkalized with KOH to pH 7) and acceptor (10 mM CsOH, pH 12) solutions. Six chlorophenols (CPs) were selected as model analytes due to the wide range of pH values that are required for their ionization and due to their high environmental relevance; quantitative measurements were carried out by CE with UV detection. Extraction recoveries of the six CPs ranged between 14 and 25% for 5 min EMEs at 150 V and 750 rpm across SLMs impregnated with 1-ethyl-2-nitrobenzene. Calibration curves were strictly linear (r(2) 0.999) in 0.01-10 g/mL range, repeatability values of peak areas were between 0.7 and 5.6% and LODs for standard solutions and environmental samples were better than 5 ng/mL.