Energy Conversion and Management, Vol.85, 551-557, 2014
Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition
The effect of enzymatic hydrolysis on microalgae organic matter solubilisation and methane production was investigated in this study. Even though both biomasses, Chlamydomonas reinhardtii and Chlorella vulgaris, exhibited similar macromolecular distribution, their cell wall composition provided different behaviors. The addition of carbohydrolase (Viscozyme) and protease (Alcalase) resulted in high carbohydrates and protein solubilisation on both biomasses (86-96%). Despite the high carbohydrate solubilisation with the carbohydrolase, methane production was enhanced by 14% for C. vulgaris, while hydrolyzed C. reinhardtii did not show any improvement. The addition of protease to C reinhardtii increased methane production by 1.17-fold. The low enhancement achieved together with the inherent high biodegradability of this biomass would not justify the cost associated to the enzyme addition. On the other hand, C. vulgaris hydrolyzed with the protease resulted in 86% anaerobic biodegradability compared to 54% of the raw biomass. Therefore, the application of protease prior anaerobic digestion of C. vulgaris could be a promising approach to decrease the energetic input required for cell wall disruption. (C) 2014 Elsevier Ltd. All rights reserved.