Energy Conversion and Management, Vol.86, 886-891, 2014
Insights into methane hydrate formation, agglomeration, and dissociation in water plus diesel oil dispersed system
Methane hydrate formation and dissociation in (5 vol% water + 95 vol% diesel oil) dispersed system containing a combined anti-agglomerant were experimentally studied using a high pressure autoclave installed with particle video microscope and focused beam reflectance measurement probes. The agglomeration of hydrate was found to occur at the initial hydrate formation stage. With the continuous formation of hydrate, the agglomeration of hydrate will be inhibited and hydrate was dispersed with the action of the anti-agglomerant. The agglomeration of hydrate also occurs when the hydrate containing fluid is under static state for a certain time. Larger hydrate particles attached by gas bubble with grape-like shape were found during hydrate dissociation. The dissociated surface water would contact with un-dissociated hydrate and accumulate to larger water/hydrate particles may be the reason that causes the agglomeration during initial hydrate dissociation process. A mechanism was proposed to describe hydrate dissociation from water in oil dispersed system. (C) 2014 Elsevier Ltd. All rights reserved.