화학공학소재연구정보센터
Energy Conversion and Management, Vol.86, 1147-1153, 2014
High-temperature CO2 capture cycles of hydrated limestone prepared with aluminum (hydr)oxides derived from kaolin
A simple and convenient process was used to improve the utilization of natural limestone and kaolin for calcium looping technology and environmental applications. The calcined natural limestone modified with the distilled water (denoted as Limestone-W), was systematically studied and compared with the other CaO sorbents (calcium acetate, calcium D-gluconate and calcined natural limestone). These CaO-based sorbents were tested for their CO2 capture behavior through 20 carbonation/calcination cycles in a thermo-gravimetric analyzer (TGA). Their morphology, pore structure and phase composition before and after carbonation/calcination cycles were determined by scanning electron microscopy, nitrogen adsorption, and X-ray diffraction. The first-cycle and multicycle sorption results revealed that the Limestone-W sorbent exhibited a relatively faster reaction rate and higher cyclic CO2 capture. The characterization data indicated that the Limestone-W was composed of a special calcium oxide structure with lower crystalline and higher porosity nanoparticles, which appeared to be the main reasons for its higher CO2 capture capability. However, the Limestone-W still suffered loss of reactivity, even though it was less pronounced than the other CaO sorbent. To avoid this unfavorable effect, a thermally stable inert material (aluminum hydroxide derived from kaolin) was incorporated into the Limestone-W structure. This new sorbent revealed higher stability because the formation of a stable framework of Ca12Al14O33 particles hindered densification and sintering of the CaO phase. It was concluded that the combination of the distilled water modified limestone with Al(OH)(3) binder is a promising approach for synthesis of CaO-based sorbents with a higher reactivity. (C) 2014 Elsevier Ltd. All rights reserved.