Energy Conversion and Management, Vol.92, 82-91, 2015
Combined emission economic dispatch of power system including solar photo voltaic generation
Reliable and inexpensive electricity provision is one of the significant research objectives since decades. Various Economic Dispatch (ED) methods have been developed in order to address the challenge of continuous and sustainable electricity provision at optimized cost. Rapid escalation of fuel prices, depletion of fossil fuel reserves and environmental concerns have compelled us to incorporate the Renewable Energy (RE) resources in the energy mix. This paper presents Combined Emission Economic Dispatch (CEED) models developed for a system consisting of multiple Photo Voltaic (PV) plants and thermal units. Based on the nature of decision variables, our proposed model is essentially a Mixed Integer Optimization Problem (MIOP). Particle Swarm Optimization (PSO) is used to solve the optimization problem for a scenario involving six conventional and thirteen PV plants. Two test cases, Combined Static Emission Economic Dispatch (SCEED) and Combined Dynamic Emission Economic Dispatch (DCEED), have been considered. SCEED is performed for full solar radiation level as well as for reduced radiation level due to clouds effect. Simulation results have proved the effectiveness of the proposed model. (C) 2014 Elsevier Ltd. All rights reserved.
Keywords:Economic Dispatch;Renewable energy;Particle Swarm Optimization;Solar PV generation;Combined Emission Economic Dispatch;Dynamic Emission Economic Dispatch