화학공학소재연구정보센터
Inorganic Chemistry, Vol.54, No.2, 560-569, 2015
Cyclometalated Fe(II) Complexes as Sensitizers in Dye-Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) often utilize transition metal-based chromophores for light absorption and semiconductor sensitization. Ru(II)-based dyes are among the most commonly used sensitizers in DSSCs. As ruthenium is both expensive and rare, complexes based on cheaper and more abundant iron could serve as a good alternative. In this study, we investigate Fe(II)-bis(terpyridine) and its cyclometalated analogues, in which pyridine ligands are systematically replaced by aryl groups, as potential photosensitizers in DSSCs. We employ density functional theory at the B3LYP/6-31G*,SDD level to obtain the ground state electronic structure of these complexes. Quantum dynamics simulations are utilized to study interfacial electron transfer between the Fe(II) photosensitizers and a titanium dioxide semiconductor. We find that cyclometalation stabilizes the singlet ground state of these complexes by 819 kcal/mol but reduces the electron density on the carboxylic acid attached to the aryl ring. The results suggest that cyclometalation provides a feasible route to increasing the efficiency of Fe(II) photosensitizers but that care should be taken in choosing the substitution position for the semiconductor anchoring group.