화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.430, 93-99, 2014
Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization
Capacitive deionization (CDI) removes charged ions from aqueous solutions through entrapment in the electric double layer (EDL) when the porous electrodes are polarized. In this study, three types of activated carbon cloth (ACC) with different pore-size distributions were used to study the effect of pore characteristics on electrosorption during CDI. Removal of seven different monovalent ions was examined for each ACC in batch reactors under 5 different combinations of applied potential and ionic strength. Results show underlying sorption mechanisms in the meso- and micro-pores were different. Electrosorption in the mesopores is influenced by partially-distorted EDL caused by EDL overlapping. Sorption capacity increased with increasing applied potential or ionic strength as overlapping effects were reduced. In contrast, EDL in the microporous regions could be highly distorted resulting in enhanced sorption capacity, which cannot be adequately described using the classic EDL theories. Electrosorption density (i.e., sorption capacity normalized by pore volume) decreased as the mesoporosity-to-microporosity ratio increased. These results are in agreement with those obtained using mathematical modeling by other recent CDI studies. Charge efficiency values were between 20% and 40% and appear to be substantially influenced by Faradaic reactions and ion desorption from the electrode surfaces. These findings suggest that pore-size distribution of electrode materials, especially the meso/microporosity ratio, should be optimized for the removal of targeted ions by CDI and well characterized to conduct more precise CDI modeling. (C) 2014 Elsevier Inc. All rights reserved.