Journal of Colloid and Interface Science, Vol.431, 112-116, 2014
Liposomal stabilization using a sugar-based, PEGylated amphiphilic macromolecule
Liposomes are an important class of colloidal drug delivery systems, yet the clinical applications of conventional liposomes can be hampered by poor colloidal and biological stabilities. In this work, a sugar-based, PEGylated amphiphilic macromolecule (AM) was evaluated for its ability to stabilize dipalmitoyl phosphatidylcholine (DPPC)-based liposomes. Compared to unmodified liposomes, AM-stabilized liposomes exhibited enhanced colloidal stability, maintaining relatively constant particle sizes for 5 weeks without aggregation. AM-stabilized liposomes also showed significantly decreased membrane permeability, even in the presence of serum. Finally, AM-stabilized liposomes displayed improved biological stability, significantly inhibiting phagocytosis by macrophages. Overall, the effectiveness of AM to stabilize liposomes was comparable to a conventional stabilizing agent, PEG-modified phosphatidylethanolamine. Based upon these results, AM is a promising stabilizing agent for colloidal drug delivery applications and currently being optimized. (C) 2014 Elsevier Inc. All rights reserved.