Journal of Colloid and Interface Science, Vol.437, 17-23, 2015
A new class of pegylated plasmonic liposomes: Synthesis and characterization
The multifunctional nanoobjects that can be controlled, manipulated and triggered using external stimuli represent very promising candidates for nanoscale therapeutic and diagnostic applications. In this study we report the successful synthesis and characterization of a new class of very stable multifunctional nanoobjects, containing cationic liposomes decorated with PEGylated gold nanoparticles (PEGAuNPs). The multifunctional hybrid nanoobjects (mHyNp) were prepared by taking advantage of the electrostatic interactions between small unilamelar cationic liposomes and negatively charged gold nanoparticles. The mHyNps have been investigated by UV-VIS absorption spectroscopy, Dynamic Light Scattering (DLS), Zeta Potential Measurements and Transmission Electron Microscopy (TEM). The TEM images clearly revealed the attachment of individual gold nanoparticles onto the spherical outer surface of the cationic liposomes which was also confirmed by DLS and UV-VIS data. Furthermore, the plasmonic properties of the hybrid complexes have been evaluated by using the Surface Enhanced Raman Spectroscopy (SERS) technique. It is shown that PEG mediated interaction between the liposomes and the gold nanoparticles enabled the recording of the SER spectra of the liposomes in aqueous environment, thus demonstrating the plasmonic properties of the hybrids. (c) 2014 Elsevier Inc. All rights reserved.
Keywords:Plasmonic liposomes;Gold colloids;Polyethylene glycol;Hybrid complexes;Surface charge;Zeta potential;TEM;SERS;DLS;UV-VIS