Journal of Physical Chemistry A, Vol.118, No.33, 6674-6684, 2014
Photoinduced Electron Transfer through Peptide-Based Self-Assembled Monolayers Chemisorbed on Gold Electrodes: Directing the Flow-in and Flow-out of Electrons through Peptide Helices
Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C-alpha-tetrasubstituted alpha-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au delta+-S delta-, junction effect) and from the electrostatic field generated by the peptide helix.