Journal of Physical Chemistry B, Vol.118, No.46, 13268-13278, 2014
Synergistic and Competitive Aspects of the Adsorption of Poly(ethylene glycol) and Poly(vinyl alcohol) onto Na-Bentonite
The competitive adsorption of poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVOH) onto Na-bentonite has been assessed quantitatively. Particular emphasis was focused on the amount of organic located within the bentonite interlayer and any subsequent effects on the extent of layer expansion. The individual isotherms showed strong adsorption for both PVOH and PEG at amounts lower than the quantities required to produce a fully loaded bilayer (0.33 g of PVOH/g of clay) and single layered structures (0.10 g of PEG/g of clay), respectively. Above these concentrations, the incremental amounts adsorbed were smaller, and the concentration of adsorbates in solution gradually increased. Na-bentonite adsorbed more PVOH than PEG at any given concentration. In the competitive study, the amount of PVOH adsorbed was enhanced in the presence of PEG (0.10 and 0.30 g/g of clay), but less PEG was adsorbed. At low loadings of PVOH (0.020.10 g/g of clay), the amount of adsorbed PEG was increased but at higher PVOH levels PEG adsorption was reduced. The XRD data showed stepped changes in the d-spacing as the adsorbed amounts of both PEG and PVOH increased. The PEG-bentonite samples did not expand beyond a bilayer structure (18 angstrom), but the XRD data for PVOH-treated samples indicated the formation of multilayer structures (d >= 44 angstrom).