Journal of Physical Chemistry B, Vol.118, No.49, 14124-14131, 2014
Local-Monomer Calculations of the Intramolecular IR Spectra of the Cage and Prism Isomers of HOD(D2O)(5) and HOD and D2O Ice lh
Dilute mixtures of HOD in pure H2O and D2O ices and liquid have been used by experimentalists to focus on the spectrum and vibrational dynamics of the local OH and OD stretches and bend of HOD in these complex and highly heterogeneous environments. The hexamer version of the mixture is HOD(D2O)(5). The cage isomer of this cluster was recently studied and analyzed theoretically using local-mode calculations of the IR spectrum by Skinner and co-workers. This and the further possibility of experimental investigation of this cluster have stimulated us to study HOD(D2O)(5) using the three-mode, local-monomer model, with the ab initio WHBB dipole moment and potential energy surfaces. Both the cage and prism isomers of this cluster are considered. In addition to providing additional insight into the HOD portion of the spectrum, the spectral signatures of each D2O are also presented in the range of 1000-4000 cm(-1). The OH stretch bands of both the prism and cage isotopomers exhibit rich structures in the range of 3100-3700 cm(-1) that are indicative of the position of the HOD in these hexamers. A preliminary investigation of the site preference of the HOD is also reported for both cage and prism HOD(D2O)(5) using an harmonic zero-point energy analysis of the entire cluster. This indicates that the energies of free-OH sites are lower than the ones of H-bonded OH sites. Finally, following our earlier work on the IR spectra of H2O ice models, we present IR spectra of pure D2O and HOD.