화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.119, No.4, 1558-1566, 2015
Hydrogen Bond Dynamics in Primary Alcohols: A Femtosecond Infrared Study
Hydrogen-bonded liquids are excellent solvents, in part due to the highly dynamic character of the directional interaction associated with the hydrogen bond. Here we study the vibrational and reorientational dynamics of deuterated hydroxyl groups in various primary alcohols using polarization-resolved femtosecond infrared spectroscopy. We show that the relaxation of the OD stretch vibration is similar for ethanol and its higher homologues (similar to 0.9 ps), while it is appreciably faster for methanol (similar to 0.75 ps). The fast relaxation for methanol is attributed to strong coupling of the OD stretch vibration to the overtone of the CH3 rocking mode. Subsequent to excited state relaxation, the dissipation of the excess energy leads to structural relaxation of the alcohol liquid structure. We show that this relaxation of the H-bonded network depends on the alkyl chain length. We find that the anisotropy of the excitation decays by both thermal diffusion from excited OD groups to nonexcited molecules and reorientational motion. The reorientation is described well by a model employing two relaxation times that increase linearly with increasing alcohol size. The short reorientation time is assigned to the partial reorientation of molecules within the alcohol cluster, while the long reorientation times can be attributed to breaking and reforming of hydrogen bonds.